光声 (PA) 成像是一种新兴的混合成像技术,可以在增加穿透深度的情况下以高特异性和微米级分辨率非侵入性地识别组织。它采用脉冲激光作为激发源,并收集超声波响应以重建光吸收图,以反映组织区域的结构和功能细节。根据激发光和接收声音的排列方式,光声成像可以是多尺度的,从人体器官和小动物全身到单细胞等微观精细结构。PA 成像的血管特异性允许神经血管耦合神经电压成像,但迄今为止大多数工作都是通过血管和血氧波动而不是直接测量来询问神经元电压活动。在这里,我们提出了一种新颖的策略,该策略采用全场光声脑检测平台,该平台配有光稳定的电压敏感染料,可直接监测完整的癫痫小鼠脑中长时间的电压动态。通过研究大脑区域之间的连通性,可以揭示电传导通路及其方向性,这些方向性通过快速时间可视化来指示。所提供的证据突出了所提出的方法对癫痫和其他电压相关疾病的诊断和映射的潜力。
在凝结物理学中,旋转超氟4和冷原子气体的行为进行了广泛的研究,请参见。[1 - 6]及其中的参考。具有低角速度,ω<ωc 1,超氟4和冷原子气体,放置在最初静止的容器内,由于基本激发的随后旋转而不会响应,因为在这种情况下,基本激发和涡流的产生在这种情况下是无能为力的。随着旋转频率ω的增加,对于ω>ωc1,系统会产生浸入超氟物质中的正常物质的细丝涡旋。然后,对于ω>ωlat>ωC1,涡旋形成三角形晶格,该晶格模拟了容器的刚体旋转。对于ω>ωC2>ωlat>ωC1,经典的冷凝物场被完全破坏。静息金属超导体对外部均匀恒定磁场h的作用做出反应,与中性超氟在旋转方面的响应类似,请参见。[1,7]。通过在该表面层中发生的超导电流(Meissner-Higgs效应),筛选在超导体上的低磁场h(在边界附近的磁场L H(有效光子质量)的所谓穿透深度上进行筛选。超导体在两个类别(第一和第二种的超导体)上细分,这是在Ginzburg-Landau参数的依赖性的依赖性的,其中L ϕ是所谓的相干长度,是公寓
摘要我们报告了一种新型材料的超导性能:鼻红细胞膜。从X≈3.8探索了Re X Lu Binary的不同组成,以接近纯Re化学计量。根据电子色散光谱结果,获得了x≈10.5的最高临界温度,最高为tc≈7k。取决于沉积条件,可获得多晶或无定形膜,这两种膜对于实际使用而言都很有趣。使用放牧X射线衍射测定法鉴定出多晶相的晶体结构为非中心对称超导体。超导特性在电阻和磁性上都被表征。磁倍率和AC/DC敏感性测量值使我们能够确定这些膜的H C 1和H C 2,以及估计相干长度ξ(0)和磁穿透深度λL(0)。我们还提供有关这些膜表面形态的信息。在该材料中的超导性证明证明了Lu在周期元素表的6周期中扮演3组过渡金属的角色的观点。然后,类似于re – nb,re – ti,re – hf和re – zr,人们可以期望结晶re – lu也打破了时间反转的对称性。如果未来的实验证明了这一点,结合了非中心对称特征,这些膜可用于形成非偏置电流设备,例如超导二极管,而无需外部磁场。
由于焊接电流会影响电极烧尽速度、熔合深度和焊件几何形状,因此它是电弧焊工艺中最重要的变量。焊道形状、焊接速度和焊接效率都受电流影响。由于直流电极负极 (DCEN)(正极性)产生更好的效果,因此电极正极 (DCEP) 上的焊接穿透深度和行进速度更大,并且它用于大多数 GTAW 焊接(反极性)。反极性允许电极尖端快速升温并在气体钨中降解。因为阳极比阴极升温更快。气体钨电弧焊中的较高电流会导致飞溅和工件损坏。同样,在气体钨电弧焊中,较低的电流设置会导致填充焊丝粘住。为了沉积等量的填充物,必须长时间施加高温。因此,对于较低的焊接电流,通常会看到更大的热影响区域。在固定电流模式下调整电压以保持电弧电流稳定 [3,4]。与其他焊接工艺相比,我们通常通过钨极惰性气体焊接实现无缺陷接头。让您更好地控制焊接,从而实现更快、更高质量的焊接。另一方面,GTAW 比大多数其他焊接方法复杂得多,难以跟踪,而且速度要慢得多。填充金属通常被使用,但是一些焊接(称为自熔焊或组合焊)不需要它。这种方法提供了竞争方法,例如焊接技术包括屏蔽金属电弧焊和气体金属电弧焊。
对于损伤容错设计 [1] 来说,疲劳和腐蚀是航空工业 [2] 中两个主要故障原因。激光冲击喷丸 (LSP) 是一种表面处理技术,可在易受疲劳现象影响的关键区域引入具有较大穿透深度的压缩残余应力。这些压缩残余应力可能导致疲劳裂纹扩展 (FCP) 延缓,如由 AA2024-T3 [3] 组成的 M(T) 试样或搅拌摩擦焊接的 AA7075-T7351 [4] 所示。然而,压缩残余应力的产生总是会导致结构内的拉伸残余应力以保持应力平衡。这些拉伸残余应力可能会导致 FCP 速率加速。因此,准确了解施加的残余应力场并预测由此产生的 FCP 速率对于保证有效和优化地应用 LSP 是必要的。 FCP 模拟中经常采用的一种策略是计算疲劳载荷循环的最小和最大应力强度因子,并使用这些应力强度因子作为 FCP 方程的输入[5–8]。所应用的 FCP 方程将裂纹尖端的应力强度因子与 FCP 速率联系起来。这项工作应用了 Paris 和 Erdogan [9] 开发的第一个 FCP 方程、Walker 方程 [10],例如,该方程成功应用于激光加热引起的残余应力场 [11],以及 NASGRO 方程 [12],该方程现在经常用于预测 FCP 速率 [5–7]。不同的 FCP 方程具有不同的计算精度和不同的计算效率。
关于材料进展摘要:当今的光学神经调节和成像方法能够对神经活动进行因果操纵,以剖析某些行为背后的复杂电路连接并促进脑机接口。在这些方法中,通常使用可见光,因此限制了体内的穿透深度,并且需要进行侵入性手术,这会损害内源性脑组织并限制受试者的自由行为。在本次演讲中,我将介绍三种最近开发的基于新材料进展的应对这些挑战的方法:声光遗传学、红外光遗传学和血管内光源。在声光遗传学中,我们证明机械发光材料可以将聚焦超声转换为局部光发射,用于活体小鼠的非侵入性光遗传神经调节。此外,受响尾蛇红外敏感性的启发,我们开发了一种方法,使用穿透大脑的红外光在自由行为的小鼠的整个大脑中进行无束缚和无植入的神经调节。最后,我们利用受生物矿物启发的方法来合成纳米级荧光粉作为血管内光源。与传统的外部光源相比,这种血管内光源具有更深的组织穿透能力,可以通过未清理的头骨对小鼠大脑进行成像。最后,我将介绍材料科学的进步如何促进我们对思维的理解。
对导管容器和微脉管系统的血管结构和量化的抽象分析对于理解中枢神经系统(CNS)内的生理和病理过程至关重要。大多数可用的体内成像方法缺乏穿透深度和/或分辨率。某些离体方法可以提供更好的分辨率,但主要是破坏性的,因为它们是在从颅骨或椎骨上取出后用于对中枢神经系统组织进行成像的。去除程序不可避免地会改变所研究结构的原位关系,并损害硬脑膜和瘦素。μangiofil允许具有出色分辨率的定性新颖的后微型计算机断层扫描(MicroangioCT)方法,因此可以可视化最小的脑毛细血管。获得的数据集赋予了包括微脉管系统在内的血管树的相当简单的定量分析。μangiofil具有出色的填充能力,并且是骨组织高的放射性能力,即使在完整的头骨或椎骨内,它也可以对脑微脉管系统进行成像。这允许原位可视化,从而研究了硬脑膜和瘦脑层以及其原始几何形状中的血液供应。此外,此处介绍的方法允许使用相关方法,即微轴,然后是经典的组织学,免疫组织化学甚至电子显微镜。此处介绍的实验方法利用了常见的桌面微型扫描仪,它使其成为临床前和基础研究中中枢神经系统(中枢神经系统微)脉管系统评估(微)脉管系统的有希望的日常工具。
经颅电刺激(TES)有望治疗神经系统疾病,但其疗效受到空间焦点和穿透深度不佳的限制。在这里,我们研究了交叉短脉冲(ISP)刺激更深型脑穿透的潜在效用。使用大鼠中的计算建模和体内斑块钳记录,我们证明了神经元以非矢量性方式整合了ISP诱导的电场。这种机制允许ISP克服常规TE的某些限制,从而在皮质和皮层下结构之间达到空间限制的刺激。在颞叶癫痫的大鼠模型中,闭环ISP刺激在减少癫痫发作持续时间和严重程度方面显着超过常规TE。与假刺激和常规TE相比, ISP将海马癫痫发作持续时间降低了49%和41%,并显着降低了运动癫痫发作的严重程度。 我们的发现表明,ISP刺激可以迅速终止海马癫痫发作,从而通过在各种神经系统和精神疾病中的应用为非侵入性神经调节提供了一种潜在的新方法。ISP将海马癫痫发作持续时间降低了49%和41%,并显着降低了运动癫痫发作的严重程度。我们的发现表明,ISP刺激可以迅速终止海马癫痫发作,从而通过在各种神经系统和精神疾病中的应用为非侵入性神经调节提供了一种潜在的新方法。
摘要:添加剂制造(AM)缺陷在纤维增强的热塑性复合材料(FRTPC)中面临着重大挑战,直接影响其结构和非结构性表现。通过基于材料挤出的AM产生的结构,特别是融合的细丝制造(FFF),逐层沉积可以引入孔隙率(在某些情况下最高10-15%),分层,空隙,纤维错位和层次之间的不完整融合。这些缺陷会损害机械性能,从而导致抗拉强度最多降低30%,在某些情况下,疲劳寿命高达20%,严重降低了该复合材料的整体性能和结构完整性。常规的非破坏性测试(NDT)技术通常难以有效地检测此类多尺度缺陷,尤其是当解决方案,穿透深度或物质异质性构成挑战时。本综述对FRTPC中的制造缺陷进行了严格的研究,根据形态,位置和大小对FFF诱导的缺陷进行了分类。讨论了能够检测到小于10 µm的空隙,以及与自感应纤维集成的结构健康监测系统(SHM)系统的高级NDT技术。与传统的NDT技术相比,还突出了机器学习算法(ML)算法在增强NDT方法的灵敏度和可靠性中的作用,这表明ML积分可以提高缺陷检测高达25–30%。最后,研究了配备连续纤维的自我报告FRTPC的潜力,用于实时缺陷检测和原位SHM。通过将ML增强的NDT与自我报告的FRTPC相结合,可以显着提高缺陷检测的准确性和效率,从而通过启用更可靠的,缺陷,更可靠的,最低的FRTPC组件来促进AM在航空航天应用中的广泛采用。
Lenox 火焰加热器摄像系统专为高温环境设计,并有 90 多年的经验作为后盾,它可以查看加热器内部,并在彩色监视器上每天 24 小时、每年 365 天实时显示所见内容。其可靠性能记录是当今任何其他系统都无法比拟的,并且还提供两年保修!Lenox 风冷火焰加热器摄像系统适用于高达 3000°F (1649ºC) 的应用,只需要 2 - 3/8 英寸 (61 毫米) 的墙壁穿透深度,并提供业内最高的图像清晰度。光量控制功能是 Lenox 独有的,由位于炉镜头中的遥控电动光圈组成。通过光量控制,操作员可以轻松调整传输到摄像机的光量,消除其他系统常见的耀斑/光晕,并确保高质量图像。该系统采用石英光学元件,这是 Lenox 的另一项独家技术,可承受高达 1200ºF (649ºC) 的温度,比其他系统中使用的玻璃透镜高。压缩空气冷却系统提供可靠的性能,同时消耗的空气比竞争系统少得多。墙盒安装组件为系统提供了保护外壳,并充当主冷却剂罩。(有关便携式系统,请参阅便携式诊断系统手册)。可选的系统附件包括自动缩回系统,该系统在发生冷却损失时自动将火焰加热器摄像机拉回,防止炉镜头组件可能因过热而损坏;高效压缩空气过滤系统,用于去除油、水和颗粒,为摄像系统提供清洁空气;以及彩色 LCD 视频监视器和数字视频录像机。