岩石中的机械化隧道施工基于盘形刀具下的裂缝扩展和岩石破碎。岩石崩裂是一种有效的破碎过程,而磨削过程则可能发生在特殊条件下。刀头穿透力是一个合适的参数,用于区分岩石切割中的崩裂和磨削过程。在这项工作中,研究了斯里兰卡乌玛-奥亚输水隧道中的磨削和崩裂过程。乌玛-奥亚项目是斯里兰卡中部高地地区东南部的输水、水电和灌溉系统。从地质角度来看,所研究路段的大部分隧道路线由非常坚固和磨蚀性的变质岩组成,在盘形刀具的钻孔过程中,这些变质岩可能容易发生磨削。在这项工作中,首先进行数据处理,以确定崩裂和磨削之间的界限。然后使用实用的数值和人工智能方法对崩裂和磨削过程进行建模。在数值建模阶段,我们尝试使建模尽可能逼真。这些建模方法的结果表明,当穿透率小于 3 毫米/转时,磨削过程占主导地位,而当穿透率大于 3 毫米/转时,岩石会发生崩裂。此外,在数值建模中,当穿透率小于 3 毫米/转时,岩石中没有观察到明显的裂缝扩展。此外,在崩裂过程的数值建模中可以看到扩展的裂缝汇合在一起并形成了碎片。
摘要:电池储能系统 (BESS) 的优化因其众多优势(例如提高能源效率、成本效益和促进网络稳定性)而越来越受到消费者的欢迎。随着电动汽车 (EV) 电池的老化,在拆卸电池后进行有效管理对于提高能源效率至关重要。在这种情况下,将二次电池 (SLB) 重新用于 BESS 应用提供了一种非常有吸引力的直接回收或处置替代方案,既具有经济效益又具有环境效益。因此,本研究旨在通过比较 IEEE 14 总线中的新电池和 SLB 来确定 BESS 的最佳尺寸和位置。该分析侧重于开发基于高光伏 (PV) 渗透率、集成运营和投资成本的经济高效的能源系统,使用从线性化网络得出的直流最优功率流 (DC-OPF) 模型。结果表明,与没有 BESS 的情况相比,优化 BESS 分别使光伏渗透率和未供应能源成本降低 2.28% 和 3.38%。此外,25%的光伏渗透率分别使新电池和SLB的每日总运营成本降低约38.89%和74.77%。
半导体:Ennovi被定位为电动移动性的领导者。您能在未来五年内分享您对印度电动流动生态系统的愿景吗?satvinder:在Ennovi,我们设想印度成为2030年之前的两个最大电动市场之一。印度有巨大的生长空间,考虑到目前每1000人的汽车穿透率为26人,并且预测是电动汽车(EVS)到2030年将拥有30%的市场份额。随着电动汽车采用的不断增长,我们的目标是通过提供尖端的电池互连技术,电源互连和自定义的信号互连来加速这种过渡。我们的重点是开发针对市场需求量身定制的成本竞争力,包括2轮,三轮车和四轮摩托车。我们致力于印度汽车行业对增长和可持续实践的愿景,以确保未来绿色,更节能的汽车生态系统。
没有专门为克服与地热能源相关的独特挑战而进行的先进技术,我们的团队将一无所获。我们的时间和应用测试产品的组合(从钻头到旋转的可通道系统)专为高温,恶劣的条件而设计。Navi-Drill™X-Treme™系列电动机承受最艰难的钻孔条件,最大化穿透率(ROP),并提供传统电动机无法获得的性能。Autotrak™旋转可通道的钻井系统有效地钻出高质量的井眼,并充满信心地将其放置在最有生产力的区域。我们的vulcanix™地热三角钻头,具有专利的金属面积密封件,其高温弹性体组件专门设计用于连续钻探高达400°F(204°C)的连续钻探,通过停留更长的时间来改善钻井经济学来减少钻头旅行。
摘要 - 连接和自动驾驶汽车(CAVS)预计可以减轻交通拥堵,尤其是在路交叉口,这是城市道路网络的主要瓶颈。本文提出了一种信号车辆耦合的最佳控制策略,用于骑士和人类驱动的车辆的混合交通流量。该方法遵循两层体系结构,该结构将信号车辆控制任务制定为两个通过混合排的概念串联的优化问题,以便中央协调员可以有效地解决它们。尤其是上层设计的,以最大程度地减少交叉路口中所有车辆的总等待时间,而下层则是通过充分利用信号计划,交叉车辆的数量以及在上层中获得的目标交叉速度来最大程度地减少汇总的车辆能量消耗。提供了广泛的仿真结果,以检查所提出的信号车辆关节控制框架的性能,并以不同的CAV穿透率,交通需求和电动汽车比率揭示新算法引入的影响。与现有方法的比较证明了在燃料使用和交通吞吐量方面提出的方法的好处。