基因组操作是一种有用的方法,可用于阐明发育、生理和行为方面的分子途径。然而,由于缺乏适用于珊瑚鱼的基因编辑工具,因此它们许多独特特征的遗传基础仍有待研究。一种适合应用这种技术的标志性珊瑚鱼群是海葵鱼 (Amphiprioninae),因为它们与海葵共生、雌雄同体、复杂的社会等级、皮肤图案发展和视觉,并且相对容易在水族箱中饲养,因此被广泛研究。在这项研究中,我们开发了一种基因编辑方案,用于将 CRISPR/Cas9 系统应用于眼斑海葵鱼 (Amphiprion ocellaris)。受精卵的显微注射用于证明我们的 CRISPR/Cas9 方法在两个不同靶位点的成功应用:与视觉有关的视紫红质样 2B 视蛋白编码基因 (RH2B) 和与黑色素生成的酪氨酸酶生成基因 (tyr)。对眼斑海马胚胎中测序的靶基因区域进行分析表明,注射胚胎的吸收率高达 73.3%。进一步分析亚克隆的突变基因序列并结合扩增子散弹枪测序表明,我们的方法在 F0 眼斑海马胚胎中产生双等位基因突变的效率为 75% 到 100%。此外,我们清楚地显示了 tyr 突变胚胎的功能丧失,其表现出典型的低黑色素表型。该方案旨在作为进一步探索 CRISPR/Cas9 在眼斑海马中潜在应用的有用起点。眼斑鱼,作为研究小丑鱼和其他珊瑚鱼基因功能的平台。
摘要:胱氨酸/谷氨酸抗植物XCT是一种与肿瘤相关的抗原,在许多癌症类型中已被新近鉴定。通过参与谷胱甘肽生物合成,XCT可以保护癌细胞免受氧化应激条件和铁毒性的影响,并有助于代谢重编程,从而促进肿瘤的进展和化学抗性。此外,XCT在癌症干细胞中过表达。这些特征使XCT成为癌症治疗的有希望的靶标,正如文献中广泛报道的,在我们的免疫靶向方面。有趣的是,对TP53基因的研究表明,野生型和突变体p53均诱导了XCT的转录后下调调节,从而导致了铁毒性。APR-246是一种可以恢复癌细胞中野生型p53功能的小分子药物,已被描述为在具有突变体p53积累的肿瘤中XCT表达的间接调节剂,因此是一种与XCT抑制相结合的有希望的药物。本综述总结了当前对XCT的知识及其对p53的调节,重点是铁the虫中这两个分子的串扰,还考虑了一些可能的组合策略,这些策略可以与抗XCT免疫促进结合使用APR-246治疗。
叶绿体ATP合酶包含质体和核遗传来源的亚基。为了研究这种复合物的协调生物发生,我们通过筛选绿色藻类衣原体中的新型ATP合酶突变体,通过筛选高光灵敏度。我们在这里报告了影响两个外围茎亚基B和B 0的突变体的表征,该突变体由ATPF和ATPG基因编码,以及三个鉴定核因子MDE1的独立突变体,这些突变体稳定叶绿体编码的ATPE mRNA所需的核因子MDE1。全基因组测序显示在ATPG的3 0 UTR中插入了转座子插入,而质谱显示在此敲低ATPG突变体中,功能性ATP合酶的一小部分积累。相反,通过CRISPR-CAS9基因编辑获得的敲除ATPG突变体,完全防止ATP合酶功能和积累,这也是在ATPF框架转移突变体中观察到的。与主要类囊体蛋白酶的FTSH1-1突变体穿越ATP合酶突变体将ATPH鉴定为FTSH底物,并表明FTSH显着促进了ATP合酶亚基的一致积累。在MDE1突变体中,不存在ATPE转录物完全阻止ATP合酶的生物发生和光合作用。使用嵌合ATPE基因营救ATPE转录本的积累,我们证明了一种新型的八度肽重复(OPR)蛋白MDE1遗传靶向ATPE 5 0 UTR。从主要内部生物生物症(〜1.5 Gy)的角度来看,将MDE1募集到其ATPE靶标招募了一个核/叶绿体相互作用的典范,这些相互作用是在最近进化的,在叶绿体的祖先中,我的cs cs cs exestor higlophyceae的祖先,〜300。
简介和目标:隐匿性乙型肝炎病毒 (HBV) 感染 (OBI) 的特征是,乙型肝炎表面抗原 (HBsAg) 阴性患者的血液/肝脏中乙型肝炎病毒 (HBV) DNA 含量较低。本研究旨在确定血清学特征为“仅抗 HBc”的患者中的 OBI 患病率和病毒学特征(病毒基因型和 HBsAg 突变体)。材料和方法:在五年期间,共对 24 900 份血清样本进行了常规乙型肝炎标志物筛查。选择所有抗 HBc 阳性/HBsAg 阴性/抗 HBs 阴性血清并分析 HBV DNA 的存在情况。对 HBs 基因和聚合酶基因序列进行了突变分析。结果:1749 份(7.02%)血清呈抗 HBc 阳性,113 份(0.45%)血清具有“仅抗 HBc”血清学特征(HBsAg/抗 HBs 阴性)。113 份(10.61%)“仅抗 HBc”阳性血清中有 12 份检测到 HBV DNA,占所有常规检测样本的 0.048%。由于病毒血症极低,仅在两份确认为 D3 亚型的血清中成功测序了 HBV 基因组。S 基因突变分析显示存在多个错义突变。除了与诊断逃逸相关的 M133I、Y134F 和 G145R 突变外,我们还发现了九种新的 OBI 相关 S 基因突变 - S136Y、F158L、K160N、E164G、S167L、A168V、L175S、S210I 和 F212C。结论:我们在 2/12 (16.6%) OBI 病例中检测到多个已知和新的 S 基因突变,尽管如此,仍需要进一步研究以确定它们在 OBI 发病机制中的作用。了解临床相关 HBV 突变的频率可能有助于改进诊断方案。 © 2023 Fundación Clínica Médica Sur, AC 由 Elsevier España, SLU 出版 这是一篇在 CC BY-NC-ND 许可下的开放获取文章 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
摘要:正向遗传筛选已显示出有害突变的后果;然而,它们最适合于繁殖率高、繁殖量大的模式生物。此外,研究人员必须如实地识别表型变化,即使是细微的变化,才能充分发挥筛选的优势。反向遗传方法也探测基因型与表型的关系,只是遗传目标是预先定义的。直到最近,反向遗传方法还依赖于非基因组基因沉默或相对低效的同源性依赖基因靶向来产生功能丧失的产物。幸运的是,成簇的规律间隔的短回文重复序列 (CRISPR)/Cas 系统的灵活性和简单性彻底改变了反向遗传学,几乎可以随意对任何生物体中的任何基因进行精确诱变。成功整合插入/缺失 (INDEL) 和无义突变,从表面上看,会产生预期的功能丧失表型,但事实证明,这些整合几乎没有效果,即使其他基因沉默方法显示出强大的功能丧失后果。结果之间的分歧提出了有关我们对基因型到表型的理解的重要问题,并强调了中心法则中的补偿能力。本综述描述了最近似乎存在基因组补偿的研究,讨论了可能的补偿机制,并考虑了对强大的基因功能丧失研究很重要的因素。
(续)指示统计上显着的差异(两尾t检验)。c和d,用媒介物(车辆)或20μmol/l d16处理的MDAH-2774细胞流式细胞仪细胞周期分析过夜。c,用PI染色的细胞的定量表明g 1-,s-和g 2 – m相间的细胞分布百分比。d,代表性pi files。*,p <0.05; **,p <0.01(两尾t检验,n = 3个生物学重复)。e,H1299稳定的殖民地形成
摘要 尽管靶向基因组编辑技术已成为加速功能基因组学的有力反向遗传方法,但由化学诱变剂诱导的传统突变体文库对于植物研究仍然很有价值。含有化学诱导突变的植物是简单而有效的遗传工具,可以在不考虑生物安全问题的情况下种植。突变体个体的全基因组测序减少了突变体筛选所需的工作量,从而提高了它们的实用性。在本研究中,我们对由用 N-甲基-N-亚硝脲 (MNU) 处理单个受精卵细胞而获得的 Oryza sativa cv. Nipponbare 突变体文库成员进行了测序。通过对该突变体文库中的 266 株 M 1 植物进行全基因组测序,我们总共鉴定出 66 万个诱导点突变。这个结果代表了 373 Mb 组装水稻基因组中每 146 kb 基因组序列中有一个突变。这些点突变均匀分布于整个水稻基因组中,超过 70,000 个点突变位于编码序列内。尽管该突变体文库规模较小,但近 61% 的所有注释水稻基因中均发现了非同义突变,8.6%(3248 个基因)的点突变对基因功能有较大影响,例如获得终止密码子或丢失起始密码子。WGS 表明使用水稻受精卵细胞的 MNU 诱变可有效诱导突变,适用于构建用于计算机突变体筛选系统的突变体文库。扩展该突变体文库及其数据库将提供一种有用的计算机筛选工具,以促进功能基因组学研究,特别是针对水稻。关键词:水稻突变体文库、N-甲基-N-亚硝脲 (MNU)、单核苷酸变体 (SNV)、NGS、计算机 TILLING、水稻、全基因组测序、遗传资源
霜霉病抗性 6 (DMR6) 蛋白是一种 2-氧戊二酸 (2OG) 和 Fe(II) 依赖性加氧酶,参与水杨酸 (SA) 代谢。SA 被认为是一种非生物胁迫耐受性增强剂,在番茄中发现 DMR6 的失活会增加其水平并诱导对多种病原体的抗病性。通过应用 CRISPR/Cas9 技术,我们生成了 Sldmr6-1 番茄突变体并测试了它们对干旱和晚疫病的耐受性。野生型番茄品种‘San Marzano’及其 Sldmr6-1 突变体被剥夺了 7 天的水。WT植物表现出严重的枯萎,而T 2 Sldmr6-1突变体叶片肿胀,并保持较高的土壤相对含水量。生态生理测量表明,Sldmr6-1突变体采取了节水行为,通过降低气孔导度来降低蒸腾速率。在干旱胁迫下,同化率也降低,导致气孔下腔中的CO 2浓度没有改变,并提高了水分利用效率。此外,在Sldmr6-1突变体中,干旱胁迫诱导抗氧化相关基因SlAPX和SlGST的上调以及参与ABA分解代谢的SlCYP707A2基因的下调。最后,我们首次在番茄中强调,Sldmr6-1 突变体对晚疫病的病原菌致病菌的敏感性降低。
细菌抗生素持久性是一种现象,即细菌暴露于抗生素后,大多数细菌死亡,而一小部分细菌进入低代谢持久状态并能够存活。一旦去除抗生素,持久性细菌群落可以复苏并继续生长。这种现象与几种不同的分子机制和途径有关。细菌抗生素持久性的一个常见机制可能是蛋白质合成的扰动。为了研究这种机制,我们鉴定了四种不同的 metG 突变体,以确定它们是否能够提高抗生素持久性。两种 metG 突变体编码 MetRS 催化位点附近的变化,另外两种突变体编码反密码子结合域附近的变化。metG 中的突变尤其令人感兴趣,因为 MetRS 负责启动 tRNA Met 和延长 tRNA Met 的氨酰化,这表明这些突变体可能影响翻译起始和/或翻译延长。我们观察到所有 metG 突变体都提高了抗生素持久性水平,而野生型 metG 的转录水平也降低了。虽然 MetRS 变体本身不会对 MetRS 活性产生影响,但它们确实降低了翻译率。我们还观察到 MetRS 变体影响同型半胱氨酸的校对机制,并且这些突变体的生长对同型半胱氨酸高度敏感。结合以前的研究结果,我们的数据表明,细胞 Met-tRNA Met 的减少