背景:顶花基因1(TFL1)属于磷脂酰乙醇胺结合蛋白(PEBP)家族,在高等植物花分生组织身份决定及开花时间调控中起重要作用。结果:在油菜基因组中鉴定出5个BnaTFL1基因拷贝。系统发育分析表明,5个BnaTFL1基因拷贝与祖先种芜菁和甘蓝中相应的同源拷贝聚集在一起。BnaTFL1的表达局限于花芽、花、种子、角果和茎组织中,并表现出不同的表达谱。利用CRISPR/Cas9技术产生的BnaC03.TFL1敲除突变体表现出早花表型,而其他基因拷贝的敲除突变体开花时间与野生型相似。此外,BnaTFL1基因单个拷贝的敲除突变体表现出了植株结构的改变,BnaTFL1突变体的株高、分枝起始高度、分枝数、角果数、每角果种子数和主花序上的角果数均显著减少。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 8 月 23 日发布。;https://doi.org/10.1101/2022.08.22.504807 doi:bioRxiv preprint
在早期发作神经退行性患者中检测到的泛素C末端水解酶L1(UCHL1)的突变体UCHL1 R178Q显示出比野生型UCHL1(UCHL1 WT)更高的催化活性。位于活动地点袋中,精氨酸是相互作用网络的一部分,该网络将催化组氨酸保持在不活动的排列中。然而,尚不清楚glutamine取代时酶促激活的结构基础和机制。我们将X射线晶体学,蛋白质核磁共振(NMR)分析,酶动力学,共价抑制分析和生物物理测量结果结合在一起,以描述突变体中的激活因子。虽然UCHL1 R178Q的晶体结构显示出催化残基和活性位点的相同排列,但该突变在化学环境中引起了广泛的变化和30多个残基的动态,有些是距突变部位的15 a远。在HSQC光谱中的主链酰胺谐振的显着拓宽表明,几种残基的主链动力学变化与溶液小角度X-射线散射(SAXS)分析一致,这表明蛋白质动力的总体增加。酶动力学表明,尽管底物的底物略有弱,但激活是由于k猫的效应所致。与此相一致,与野生型酶相比,突变体与底物衍生的不抑制剂UB-VME的反应中显示了更高的二阶速率常数(K INACT /K I),与野生型酶相比,这是一种观察到的,表明在突变剂中具有更复发性的催化性催化性。2024 Elsevier Ltd.保留所有权利。一起,观察结果强调了结构可塑性是促进酶动力学行为的因素,可以通过突变效应调节。
摘要。Nurhayati,Ardie SW,Santoso TJ,Sudarsono。2021。CRISPR/CAS9介导的基因组编辑,在水稻CV中。 IPB3S导致半昏迷的表型突变体。 生物多样性22:3792-3800。 IPB3S是印尼低地大米和高产品种。 但是,植物高度的姿势使其容易产生住宿,这可以降低产量。 这项研究旨在通过将CRISPR/CAS9 GA 20 OX2构建体引入IPB3s并开发半沃尔夫水稻突变体来编辑GA 20 OX2基因。 IPB3S的未成熟胚胎外植体用于由携带PC1300-CAS9/ GA 20 OX2的EHA105农杆菌菌株介导的转化过程,并通过更改再生培养基组成。 PCR分析表明,水稻CV。 IPB3S遗传转化获得了携带HPT基因的推定突变体T0线(生长效率为47.9%,而转化效率为19.3%)。 使用开发的再生培养基,我们获得了24种推定的水稻CV。 IPB3S T0突变线携带HPT。 再生IPB3S的最佳介质是A培养基(再生效率73.3%)。 IPB 8和IPB 14有可能在下一代评估。 在IPB 8-3突变体中观察到T1生成的最短植物高度。CRISPR/CAS9介导的基因组编辑,在水稻CV中。IPB3S导致半昏迷的表型突变体。 生物多样性22:3792-3800。 IPB3S是印尼低地大米和高产品种。 但是,植物高度的姿势使其容易产生住宿,这可以降低产量。 这项研究旨在通过将CRISPR/CAS9 GA 20 OX2构建体引入IPB3s并开发半沃尔夫水稻突变体来编辑GA 20 OX2基因。 IPB3S的未成熟胚胎外植体用于由携带PC1300-CAS9/ GA 20 OX2的EHA105农杆菌菌株介导的转化过程,并通过更改再生培养基组成。 PCR分析表明,水稻CV。 IPB3S遗传转化获得了携带HPT基因的推定突变体T0线(生长效率为47.9%,而转化效率为19.3%)。 使用开发的再生培养基,我们获得了24种推定的水稻CV。 IPB3S T0突变线携带HPT。 再生IPB3S的最佳介质是A培养基(再生效率73.3%)。 IPB 8和IPB 14有可能在下一代评估。 在IPB 8-3突变体中观察到T1生成的最短植物高度。IPB3S导致半昏迷的表型突变体。生物多样性22:3792-3800。IPB3S是印尼低地大米和高产品种。但是,植物高度的姿势使其容易产生住宿,这可以降低产量。这项研究旨在通过将CRISPR/CAS9 GA 20 OX2构建体引入IPB3s并开发半沃尔夫水稻突变体来编辑GA 20 OX2基因。IPB3S的未成熟胚胎外植体用于由携带PC1300-CAS9/ GA 20 OX2的EHA105农杆菌菌株介导的转化过程,并通过更改再生培养基组成。PCR分析表明,水稻CV。 IPB3S遗传转化获得了携带HPT基因的推定突变体T0线(生长效率为47.9%,而转化效率为19.3%)。 使用开发的再生培养基,我们获得了24种推定的水稻CV。 IPB3S T0突变线携带HPT。 再生IPB3S的最佳介质是A培养基(再生效率73.3%)。 IPB 8和IPB 14有可能在下一代评估。 在IPB 8-3突变体中观察到T1生成的最短植物高度。PCR分析表明,水稻CV。IPB3S遗传转化获得了携带HPT基因的推定突变体T0线(生长效率为47.9%,而转化效率为19.3%)。使用开发的再生培养基,我们获得了24种推定的水稻CV。IPB3S T0突变线携带HPT。 再生IPB3S的最佳介质是A培养基(再生效率73.3%)。 IPB 8和IPB 14有可能在下一代评估。 在IPB 8-3突变体中观察到T1生成的最短植物高度。IPB3S T0突变线携带HPT。再生IPB3S的最佳介质是A培养基(再生效率73.3%)。IPB 8和IPB 14有可能在下一代评估。在IPB 8-3突变体中观察到T1生成的最短植物高度。
摘要:水稻SLR1基因编码DELLA蛋白(具有DELLA氨基酸基序的蛋白质),其功能丧失突变通过抑制植物生长而使植物矮化。我们利用CRISPR/Cas9基因组编辑技术在水稻中靶向突变DELLA/TVHYNP结构域,生成具有半显性矮化表型的slr1-d突变体。在31株转基因植株中获得了16个遗传编辑株系。深度测序结果表明,突变体在SLR1基因的TVHYNP结构域靶位点有6种不同的突变类型。同源编辑植株在T1代中选择了没有通过分离转录的T-DNA(T-DNA)的个体。slr1-d7和slr1-d8植株导致对赤霉素(GA)不敏感的矮化表型,叶片皱缩,节间缩短。通过 RNA-seq 进行的全基因组基因表达分析表明,在编辑的突变体植物中,两个与 GA 相关的基因 GA 20 OX 2(赤霉素氧化酶)和 GA 3 OX 2 的表达水平有所增加,这表明 GA 20 OX 2 充当了 GA 12 信号的转换器。这些突变体植物需要改变 GA 反应,至少部分是由于植物激素信号系统过程的缺陷,并阻止了细胞伸长。新的突变体,即 slr1-d7 和 slr1-d8 系,是有价值的半显性矮化等位基因,具有利用 CRISPR / Cas9 系统在水稻中进行分子育种的潜在应用价值。
革兰氏阳性菌屎肠球菌正日益成为医院内获得性抗生素耐药性感染的病因。屎肠球菌生物学研究的一个基本部分依赖于生成靶向突变体的能力,但这一过程目前劳动密集且耗时,每个突变体需要 4 到 5 周。在本报告中,我们描述了一种依赖于屎肠球菌的高重组率的方法,以及应用成簇规律间隔短回文重复序列 (CRISPR)-Cas9 基因组编辑工具来更有效地在屎肠球菌染色体中生成靶向突变体。使用此工具和多重耐药临床屎肠球菌菌株 E745,我们在 lacL 基因中生成了一个缺失突变体,该基因编码屎肠球菌 β-半乳糖苷酶的大亚基。使用 5-溴-4-氯-3-吲哚基-β-D-半乳糖苷 (X-gal) 进行蓝白斑筛选可用于区分野生型和 lacL 缺失突变体。我们还将两个 gfp 拷贝插入到内在屎肠球菌大环内酯类抗性基因 msrC 中,以产生稳定的绿色荧光细胞。我们得出结论,CRISPR-Cas9 可用于在 3 周内对屎肠球菌进行有针对性的基因组修饰,且动手时间有限。这种方法可能适用于其他具有高内在重组率的革兰氏阳性菌。
马铃薯是第三大重要粮食作物,但种植面临众多疾病和不利的非生物条件的挑战。为了对抗疾病,经常使用杀菌剂是很常见的。通过基因组编辑敲除易感基因可能是提高抗性的持久选择。DMR6 已被描述为几种作物中的易感基因,根据数据显示,基因功能中断后抗性增加。在马铃薯中,Stdmr6-1 突变体已被描述为在受控条件下对晚疫病病原菌 Phytophthora infestans 具有更高的抗性。在这里,我们展示了连续四年在 P. infestans 种群复杂的地区对 CRISPR/Cas9 突变体进行的田间评估,结果表明对晚疫病的抗性增强,而不会影响产量或块茎质量。此外,对田间试验中马铃薯块茎的研究表明,对普通疮痂病的抗性增强,突变株系在受控条件下表现出对早疫病病原菌 Alternaria solani 的抗性增强。早疫病和疮痂病是马铃薯抗性育种中难以攻克的病害,因为抗性基因非常稀少。Stdmr6-1 突变体所描述的广谱抗性可能进一步扩展到某些非生物胁迫条件。在干旱模拟或盐度的受控实验中,Stdmr6-1 突变体植物受到的影响小于背景品种。总之,这些结果表明 Stdmr6-1 突变体有望成为未来可持续马铃薯种植的有用工具,且没有任何明显的权衡。
摘要:杂草导致大豆产量最大的产量损失。耐除草剂 - 耐大豆种质的发展对于杂草控制和产生改善的意义非常重要。在这项研究中,我们使用胞嘧啶基本编辑器(BE3)开发了新型的抗除草剂大豆。我们在GMAHAS3和GMAHAS4中成功引入了碱基取代,并获得了无遗传的大豆豆,在GMAHAS4中具有纯合P180S突变。GMAHAS4 P180S突变体对Chlorsulfuron,丙甲酮钠和umetsulam具有明显的耐药性。尤其是对Chlorsulfuron的耐药性是野生型TL-1的100倍以上。GMAHAS4 P180S突变体的农艺性能在自然生长条件下没有与TL-1的显着差异。此外,我们为GMAHAS4 P180S突变体开发了等位基因的PCR标记,它们很容易区分纯合子,杂合突变体和野生型植物。这项研究表明,通过使用CRISPR/CAS9介导的基础编辑,一种可行有效的方法来产生耐除草剂的大豆。
马铃薯是第三大重要粮食作物,但种植面临众多疾病和不利的非生物条件的挑战。为了对抗疾病,经常使用杀菌剂是很常见的。通过基因组编辑敲除易感基因可能是提高抗性的持久选择。DMR6 已被描述为几种作物中的易感基因,根据数据显示,基因功能中断后抗性增加。在马铃薯中,Stdmr6-1 突变体已被描述为在受控条件下对晚疫病病原菌 Phytophthora infestans 具有更高的抗性。在这里,我们展示了连续四年在 P. infestans 种群复杂的地区对 CRISPR/Cas9 突变体进行的田间评估,结果表明对晚疫病的抗性增强,而不会影响产量或块茎质量。此外,对田间试验中马铃薯块茎的研究表明,对普通疮痂病的抗性增强,突变株系在受控条件下表现出对早疫病病原菌 Alternaria solani 的抗性增强。早疫病和疮痂病是马铃薯抗性育种中难以攻克的病害,因为抗性基因非常稀少。Stdmr6-1 突变体所描述的广谱抗性可能进一步扩展到某些非生物胁迫条件。在干旱模拟或盐度的受控实验中,Stdmr6-1 突变体植物受到的影响小于背景品种。总之,这些结果表明 Stdmr6-1 突变体有望成为未来可持续马铃薯种植的有用工具,且没有任何明显的权衡。
在真核生物中,双链断裂(DSB)可以通过同源重组(HR)或非同源最终连接(NHEJ)修复。在体细胞中,人力资源非常不具体。因此,绝大多数DSB通过NHEJ的两种不同途径进行修复。经典(CNHEJ)途径取决于het-rodimer ku70/ku80,而聚合酶theta(polq)(polq)是替代(anhej)途径的核心。令人惊讶的是,即使两种途径受损,拟南芥植物也是可行的。但是,它们表现出严重的生长迟缓和生育能力降低。有丝分裂过轴酶的分析表明,双突变体的特征是由于DSB修复缺陷而导致染色体碎片的急剧增加。与单个突变体相反,发现双突变体对诱导DSB的基因毒素博来霉素高度敏感。因此,这两种途径都可以在DSB修复中相互补充。我们推测,在没有NHEJ途径的情况下,HR可能会增强。这对于基因靶向(GT)特别有吸引力,其中使用同源模板引入了预定的变化。不期望的是,与野生型植物相比,POLQ单突变体和双突变体的GT频率明显较低。因此,我们能够证明消除两种NHEJ途径并不对农业介导的GT构成有吸引力的方法。但是,我们的结果清楚地表明,CNHEJ的损失导致GT频率的增加,这对于使用Planta GT策略的实践应用特别有吸引力。