病毒进化的原材料是由复制、转录或转录后过程中发生的宿主内突变提供的。冠状病毒科的复制和转录通过合成负义“反基因组”进行,这些“反基因组”充当正义基因组和亚基因组 RNA 的模板。因此,SARS-CoV-2 和其他冠状病毒的基因组突变可能发生在负义或正义 RNA 合成期间(和之后),并可能具有不同的模式和后果。我们首次探索了 SARS-CoV-2(亚)基因组和反(亚)基因组 RNA 的突变谱。我们使用了使用定量链感知测序方法生成的高质量深度测序数据集,控制了伪影和测序错误,并仔细检查以准确检测宿主内多样性。负链和正义链共识之间的核苷酸差异因患者而异,并且与年龄或性别无关。两条 RNA 链上的宿主内次要变异之间的突变模式相似和不同表明存在链特异性突变或宿主脱氨酶和氧化损伤编辑。我们观察到负链上通常存在中性和轻微的负选择,而基因组正链上的 ORF1a、ORF1b 和 S 基因则存在纯化选择。
晚期非小细胞肺癌(NSCLC)患者的基因分型表皮生长因子受体(EGFR)基因对于鉴定可能受益于靶向疗法的患者至关重要。在临床环境中使用的不同方法的EGFR突变检测率有系统地评估,将为照顾NSCLC患者的临床医生和实验室科学家提供有价值的信息。这项研究回顾性地回顾了过去10年中我们实验室获得的EGFR数据。总共21,324例NSCLC病例成功地接受了EGFR基因分型的临床治疗目的,包括5,244例通过Sanger测序测试的病例,13,329例通过实时PCR测试的病例和2,751例通过下一代测序测试(NGS)。平均EGFR突变率为45.1%,通过Sanger测序鉴定40.3%,实时PCR为46.5%,NGS为47.5%。鉴定出EGFR突变的病例中,其中93.3%的含有单个EGFR突变(92.1%的19del或L858R,而7.9%的突变为7.9%),6.7%的6.7%HARBED HARBE COMPLICE EGFR EGFR突变。在本研究中鉴定的72个不同的EGFR变体中,其中15个(单个或复杂的EGFR突变)在NSCLC中新鉴定。对于由NGS测试的EGFR突变的这些病例,其中65.3%的人在某些非EGFR基因中还携带与肿瘤相关的变体,其中约三分之一被认为是靶向药物的候选者。ngs方法不仅通过提供EGFR的最高突变检测率,而且还通过在临床环境中鉴定有针对性药物的可起作用的非EGFR突变,这表现出比Sanger测序和实时PCR的优势。
change Patient 1 16-20 c.919-2A>G - c.919-2A>G - profound EVA Patient 1-II 11-15 c.919-2A>G - c.919-2A>G - profound EVA Patient 2 11-15 c.919-2A>G - c.281C>T p.T94I severe EVA Patient 3 1-5 c.919-2A>G - c.2027T>A p.L676Q profound EVA Patient 4-I 6-10 c.1318A>T p.K440X c.1229C>T p.T410M profound EVA & IP-II Patient 4-II 6-10 c.1318A>T p.K440X c.1229C>T p.T410M profound EVA & IP-II Patient 5 1-5 c.919-2A>G - c.716T>A p.V239D profound EVA & IP-II Patient 6 1-5 c.2027T>A p.L676Q c.2027T>A p.L676Q profound EVA & IP-II Patient 7 1-5 c.919-2A>G - c.2027T>A p.L676Q severe EVA & IP-II Patient 8 1-5 c.919-2A>G - c.1547dup p.S517FfsX10 severe EVA & IP-II Patient 9 1-5 c.919-2A>G - c.1318A>T p.K440X profound EVA & IP-II Patient 10 11-15 c.919-2A>G - c.2027T>A p.L676Q profound EVA & IP-II Patient 11 11-15 c.919-2A>G - c.919-2A>G - severe EVA & IP-II Patient 12 6-10 c.1975G>C P.V659L C.2027T> A P.L676Q深刻EVA和IP-II患者13-I 11-15 C.1318A> T P.K440X C.1318A> T P.K440X深刻EVA和IP-II患者患者13-20患者13-20 C.1318A> T P.K4440X C.1318A&IPEVA&IP erea + 13-III 6-10 C.1318A> T P.K440x C.1318A> T P.K440X严重EVA和IP-II患者14 6-10 C.2027T> A-C.2089+1G> A-Dexveral Eva&IP-II患者15 1-5 C.919-2A> G P.L676Q C.1313131318A EVA,前庭渡槽扩大; IP-II,人工耳蜗不完整的分区II类 *所有ID并未表示为医院身份。
SARS-CoV-2 在人类群体中的复制由突变体的分布来定义,这些突变体在受感染宿主中以不同的频率存在,并且可以通过超深度测序技术检测到。在本研究中,我们检查了来自疫苗突破患者的 5 个鼻咽分离株的刺突编码 (S 编码) 区域的扩增子的 SARS-CoV-2 突变谱。有趣的是,所有患者都感染了 Alpha 变体,但在常驻病毒的突变谱中存在与 Delta Plus、Iota 和 Omicron 变体相对应的氨基酸替换。对来自疫苗突破患者的 SARS-CoV-2 进行深度测序分析揭示了丰富的突变类型库,并且还可以识别出可以代表流行病学显性变体的耐受替换。
肝细胞癌(HCC)是上皮起源的癌。虽然有几个因素,但特定的遗传和表观遗传景观定义了HCC的起始和进展。遗传突变,尤其是错义突变,通常是包括HCC在内的癌症发作的预测指标。具体而言,与端粒酶,TP53和β-catenin(CTNNB1)相关的突变是HCC中最常见的三个最常见突变基因之一。这些遗传突变定义了HCC的特定亚型,在miRNA表达和相互作用组方面表现出特定的表观遗传表达模式。在当前的研究中,我们在三种不同的细胞系Hepg2,Huh7和QGY7703之间对表现出不同的突变模式进行了多个miRNA的差异表达分析。这是第一个基于miRNA表达的HCC细胞系的研究。我们还确定了与显着差异表达的miRNA相关的富集途径,生物信息上预测了它们的靶标,并表征了相互作用。此外,我们根据癌症样品的突变状态对可公开可用数据集的小型RNA测序数据进行了分类,并计算了与体外数据相似的MiRNA的重叠,并预测了顶级HUB基因及其相关途径,并使用集成的BioEnformic方法预测了他们相关的途径。
CRISPR–Cas9 介导的基因组编辑已广泛应用于真核系统的基础和应用生物学研究。虽然许多研究认为 CRISPR 靶位的 DNA 序列是 CRISPR 诱变效率和突变谱的主要决定因素,但越来越多的证据揭示了染色质环境的重要作用。尽管如此,大多数先前的研究都受到缺乏足够的表观遗传资源和/或仅在短时间窗口内暂时表达 CRISPR–Cas9 的限制。在本研究中,我们利用拟南芥 (Arabidopsis thaliana) 中丰富的高分辨率表观基因组资源,使用稳定的转基因植物来解决染色质特征对 CRISPR–Cas9 诱变的影响。我们的结果表明,DNA 甲基化和染色质特征可能导致诱变效率发生高达 250 倍的显著变化。低诱变效率主要与抑制性异染色质特征有关。这种抑制效应似乎在细胞分裂过程中持续存在,但可以通过大幅减少 CRISPR 靶位的 DNA 甲基化来缓解。此外,特定的染色质特征(例如 H3K4me1、H3.3 和 H3.1)似乎与非同源末端连接修复途径介导的 CRISPR-Cas9 突变谱的显著变化有关。我们的研究结果提供了强有力的证据,表明特定的染色质特征可能对 CRISPR-Cas9 诱变效率和 DNA 双链断裂修复结果产生重大而持久的影响。
为携带特定基因异常的肺腺癌患者带来了显著的获益,携带表皮生长因子受体(EGFR)突变和间变性淋巴瘤激酶(ALK)融合/重排患者的死亡率明显下降(5-6)。针对EGFR突变的靶向药物如表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKI)已投入临床,部分患者由于T790M等EGFR耐药突变或其他EGFR下游通路激活而在1-2年内产生耐药(7-8)。此外,其他基因突变可能作为肺腺癌的潜在治疗靶点或重要的预后指标(9)。因此,全面、准确地分析肺腺癌的基因突变谱对指导临床治疗选择和预后评估具有重要意义。
急性髓样白血病(AML)是一种遗传异质性恶性肿瘤,其特征是髓样前体细胞的克隆膨胀。基因组分析的进步增强了我们对AML发病机理的理解,从而鉴定了复发突变,包括TP53,FLT3,MUC4,RAS,RAS和IDH1/2。这些突变显着影响治疗反应和预后,TP53突变赋予了较差的结果和对常规疗法的抵抗力。尽管基于Venetoclax的方案出现了,但阻力机制仍然存在,因此需要发展新型的治疗策略。本研究旨在研究药物组合使用体外AML细胞系和体内斑马鱼胚胎异种移植模型的AML治疗的功效。具体来说,我们专注于两种药物组合。 Pan-RAF抑制剂LY3009120与MTOR抑制剂Sapanisertib(指定为LS)和JAK1/2抑制剂ruxolitinib结合使用ERK抑制剂Ulixertinib(指定为RU)。该研究整合了实时细胞活力测定,异种移植成像和基因组分析,以评估药物疗效并探索治疗反应与突变谱之间的相关性,尤其是TP53,FLT3和MUC4突变。与基于Venetoclax的治疗可降低AML细胞系的细胞活力相比,LS和RU这两种组合都表现出了优异的功效。LS组合显示MOLM16和SKM细胞中细胞活力的显着降低,而RU表现出可比的功效,毒性较低。在斑马鱼胚胎中,LS组合有效地抑制了异种移植的人AML细胞的增殖,这表明荧光信号降低,表明细胞死亡。RU组合还破坏了生存信号通路,显示了作为治疗策略的希望。此外,在药物反应和突变谱之间确定了与TP53,FLT3和MUC4突变之间的相关性,从而显着影响对LS和RU组合的敏感性。这些发现支持LS和RU作为当前临床方案的有效替代方案的进一步发展,对个性化AML治疗的影响。
由于血脑屏障和复杂的突变谱,原发性中枢神经系统肿瘤的治疗具有挑战性,并且与低存活率有关。然而,最近的研究已经发现了神经胶质瘤的常见突变[异柠檬酸脱氢酶 (IDH) - 野生型和突变型,WHO II-IV 级;IV 级肿瘤称为胶质母细胞瘤 (GBM)]。这些突变驱动表观遗传变化,导致烟酸磷酸核糖转移酶 (NAPRT) 基因位点的启动子甲基化,该基因位点编码一种参与生成 NAD + 的酶。重要的是,NAPRT 沉默使另一种 NAD + 生物合成酶烟酰胺磷酸核糖转移酶 (NAMPT) 的抑制剂具有治疗脆弱性,从而使这些恶性肿瘤的治疗变得合理。多种系统给药的 NAMPT 抑制剂 (NAMPTi) 已在临床试验中得到开发和测试,但剂量限制性毒性——包括骨髓抑制和