change Patient 1 16-20 c.919-2A>G - c.919-2A>G - profound EVA Patient 1-II 11-15 c.919-2A>G - c.919-2A>G - profound EVA Patient 2 11-15 c.919-2A>G - c.281C>T p.T94I severe EVA Patient 3 1-5 c.919-2A>G - c.2027T>A p.L676Q profound EVA Patient 4-I 6-10 c.1318A>T p.K440X c.1229C>T p.T410M profound EVA & IP-II Patient 4-II 6-10 c.1318A>T p.K440X c.1229C>T p.T410M profound EVA & IP-II Patient 5 1-5 c.919-2A>G - c.716T>A p.V239D profound EVA & IP-II Patient 6 1-5 c.2027T>A p.L676Q c.2027T>A p.L676Q profound EVA & IP-II Patient 7 1-5 c.919-2A>G - c.2027T>A p.L676Q severe EVA & IP-II Patient 8 1-5 c.919-2A>G - c.1547dup p.S517FfsX10 severe EVA & IP-II Patient 9 1-5 c.919-2A>G - c.1318A>T p.K440X profound EVA & IP-II Patient 10 11-15 c.919-2A>G - c.2027T>A p.L676Q profound EVA & IP-II Patient 11 11-15 c.919-2A>G - c.919-2A>G - severe EVA & IP-II Patient 12 6-10 c.1975G>C P.V659L C.2027T> A P.L676Q深刻EVA和IP-II患者13-I 11-15 C.1318A> T P.K440X C.1318A> T P.K440X深刻EVA和IP-II患者患者13-20患者13-20 C.1318A> T P.K4440X C.1318A&IPEVA&IP erea + 13-III 6-10 C.1318A> T P.K440x C.1318A> T P.K440X严重EVA和IP-II患者14 6-10 C.2027T> A-C.2089+1G> A-Dexveral Eva&IP-II患者15 1-5 C.919-2A> G P.L676Q C.1313131318A EVA,前庭渡槽扩大; IP-II,人工耳蜗不完整的分区II类 *所有ID并未表示为医院身份。
动机:了解 DNA 双链断裂 (DSB) 修复所涉及的因素对于开发靶向抗癌疗法至关重要,但许多基因的作用仍不清楚。最近的研究表明,某些基因的扰动可以改变 DSB 修复后留下的序列特异性突变的分布。这表明全基因组筛选可以通过识别基因来揭示新的 DSB 修复因子,这些基因的扰动会导致在给定 DSB 位点观察到的突变分布谱与野生型有显著偏差。然而,为全基因组扰动筛选设计适当的对照可能具有挑战性。我们探索了这样一种想法,即全基因组筛选可能允许我们放弃使用传统的非靶向对照,方法是将分析重新定义为异常值检测问题,假设大多数基因对 DSB 修复的影响最小。结果:我们提出了 MUSICiAn(突变特征目录分析),这是一种组合数据分析方法,通过测量所有光谱分布与集中趋势的偏差,对没有对照的基因扰动特定突变谱进行排序。我们表明 MUSICiAn 可以有效估计现有 Repair-seq 数据集的伪对照,筛选 476 个基因和 60 个非靶向对照。我们进一步将 MUSICiAn 应用于全基因组数据集,该数据集分析了 CRISPR-Cas9 在三个靶位点诱导的突变结果,这些突变发生在细胞中,每个细胞的个体扰动为 18,406 个基因。MUSICiAn 成功恢复了已知基因,突出了剪接体在 DSB 修复中不太受重视的作用,并揭示了进一步研究的候选基因。可用:github.com/joanagoncalveslab/MUSICiAn。
肝细胞癌(HCC)是上皮起源的癌。虽然有几个因素,但特定的遗传和表观遗传景观定义了HCC的起始和进展。遗传突变,尤其是错义突变,通常是包括HCC在内的癌症发作的预测指标。具体而言,与端粒酶,TP53和β-catenin(CTNNB1)相关的突变是HCC中最常见的三个最常见突变基因之一。这些遗传突变定义了HCC的特定亚型,在miRNA表达和相互作用组方面表现出特定的表观遗传表达模式。在当前的研究中,我们在三种不同的细胞系Hepg2,Huh7和QGY7703之间对表现出不同的突变模式进行了多个miRNA的差异表达分析。这是第一个基于miRNA表达的HCC细胞系的研究。我们还确定了与显着差异表达的miRNA相关的富集途径,生物信息上预测了它们的靶标,并表征了相互作用。此外,我们根据癌症样品的突变状态对可公开可用数据集的小型RNA测序数据进行了分类,并计算了与体外数据相似的MiRNA的重叠,并预测了顶级HUB基因及其相关途径,并使用集成的BioEnformic方法预测了他们相关的途径。
病毒进化的原材料是由复制、转录或转录后过程中发生的宿主内突变提供的。冠状病毒科的复制和转录通过合成负义“反基因组”进行,这些“反基因组”充当正义基因组和亚基因组 RNA 的模板。因此,SARS-CoV-2 和其他冠状病毒的基因组突变可能发生在负义或正义 RNA 合成期间(和之后),并可能具有不同的模式和后果。我们首次探索了 SARS-CoV-2(亚)基因组和反(亚)基因组 RNA 的突变谱。我们使用了使用定量链感知测序方法生成的高质量深度测序数据集,控制了伪影和测序错误,并仔细检查以准确检测宿主内多样性。负链和正义链共识之间的核苷酸差异因患者而异,并且与年龄或性别无关。两条 RNA 链上的宿主内次要变异之间的突变模式相似和不同表明存在链特异性突变或宿主脱氨酶和氧化损伤编辑。我们观察到负链上通常存在中性和轻微的负选择,而基因组正链上的 ORF1a、ORF1b 和 S 基因则存在纯化选择。
晚期非小细胞肺癌(NSCLC)患者的基因分型表皮生长因子受体(EGFR)基因对于鉴定可能受益于靶向疗法的患者至关重要。在临床环境中使用的不同方法的EGFR突变检测率有系统地评估,将为照顾NSCLC患者的临床医生和实验室科学家提供有价值的信息。这项研究回顾性地回顾了过去10年中我们实验室获得的EGFR数据。总共21,324例NSCLC病例成功地接受了EGFR基因分型的临床治疗目的,包括5,244例通过Sanger测序测试的病例,13,329例通过实时PCR测试的病例和2,751例通过下一代测序测试(NGS)。平均EGFR突变率为45.1%,通过Sanger测序鉴定40.3%,实时PCR为46.5%,NGS为47.5%。鉴定出EGFR突变的病例中,其中93.3%的含有单个EGFR突变(92.1%的19del或L858R,而7.9%的突变为7.9%),6.7%的6.7%HARBED HARBE COMPLICE EGFR EGFR突变。在本研究中鉴定的72个不同的EGFR变体中,其中15个(单个或复杂的EGFR突变)在NSCLC中新鉴定。对于由NGS测试的EGFR突变的这些病例,其中65.3%的人在某些非EGFR基因中还携带与肿瘤相关的变体,其中约三分之一被认为是靶向药物的候选者。ngs方法不仅通过提供EGFR的最高突变检测率,而且还通过在临床环境中鉴定有针对性药物的可起作用的非EGFR突变,这表现出比Sanger测序和实时PCR的优势。