这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aisy.202100016。本文受版权保护。保留所有权利
摘要 — 大自然一直启发着人类精神,科学家经常根据对大自然的观察开发新方法。成像和传感技术的最新进展使人们对生物神经过程有了更深入的了解。为了找到增强神经网络学习能力的新策略,我们专注于一种与生物神经网络中的学习任务和神经稳定性密切相关的现象,即稳态可塑性。在描述稳态可塑性的理论中,突触缩放被发现是最成熟和最适用的。我们系统地讨论了关于突触缩放理论的先前研究及其如何应用于人工神经网络。因此,我们利用信息论来分析评估突触缩放如何影响互信息。基于这些分析结果,我们提出了两种在简单和复杂、前馈和循环神经网络的训练过程中应用突触缩放的方式。我们在标准基准上将我们的方法与最先进的正则化技术进行了比较。我们发现,在广泛的网络前馈和循环拓扑和数据集上的实验中,与之前的正则化方法相比,所提出的方法在回归和分类任务中产生的误差最低。
近 70 年前,卡尔·拉什利 (Karl Lashley) 开始寻找印迹。此后,人们学到了很多东西,但分歧依然存在。在当代学习和记忆的神经生物学中,有两种截然不同的概念在竞争:联想/联结 (A/C) 概念和计算/表征 (C/R) 概念。这两种理论都建立在这样的信念之上:心智是从物质大脑的属性和过程产生的。这些理论的不同之处在于它们对记忆的神经生物学基础是什么以及它在大脑中的位置的描述。记忆的 A/C 理论强调需要将记忆认知与记忆印迹区分开来,并假定记忆认知是通过印迹回路路由的模式化神经活动的一种新兴属性。在这个模型中,学习重新组织突触关联强度以指导未来的神经活动。重要的是,本文所提倡的 A/C 理论认为突触变化不是象征性的,尽管通常是必需的,但对于记忆认知来说并不够。相反,突触变化提供了恢复神经活动符号模式的能力和蓝图。与假设记忆出现在电路层面的 A/C 理论不同,C/R 概念表明记忆表现在细胞内分子结构的层面。在 C/R 理论中,这些细胞内结构传递信息,其特性与大脑计算利用读/写存储器的观点相一致,功能类似于计算机中的读/写存储器。新的研究激发了双方的热情,并强调了进行新讨论的必要性。本文介绍了这两种理论、每种理论尚未解决的关键问题以及几种潜在的发展路径。
杰斐逊数字共享将这篇文章带给您免费和开放访问。Jefferson Digital Commons是Thomas Jefferson大学教学中心(CTL)的服务。Commons是杰斐逊书籍和期刊的展示,经过同行评审的学术出版物,大学档案馆的独特历史收藏以及教学工具。Jefferson Digital Commons允许研究人员和感兴趣的读者在世界任何地方学习并与Jefferson奖学金保持最新状态。本文已被杰斐逊数字共享的授权管理员接受,以纳入药理学和实验治疗学院的教师论文。有关更多信息,请联系:jeffersondigitalcommons@jefferson.edu。
摘要 - 通过利用亚波长等离子设备来实现紧凑的光学整合电路,需要设计紧凑和有效的光子对等离激元模式转换器的设计。尤其是对于需要多个转换器的等离子多输入设备,例如逻辑门,可以在很大程度上通过光子波导将足迹构成,这应该在设计中考虑。在这项工作中,我们为应用多输入等离子体设备的应用模拟和基准五个Photonic to for等离子体模式转换器拓扑。我们的设计包括等离子波导的定向和末端耦合方案,以及线和插槽构造的Si光子波导。考虑到光子波导和等离子波导,总足迹以及模式转换效率之间的音高不匹配,我们优化了转换器的性能。
肌肉痉挛在慢性脊髓损伤(SCI)中很常见,对康复和日常活动提出了挑战。痉挛的药理学管理主要是靶向抑制兴奋性输入的抑制,这是一种阻碍运动后期的方法。为了确定更好的靶标,我们研究了对运动神经元的抑制性和兴奋性突触输入的变化,以及慢性SCI中的动感神经元兴奋性。我们在成年小鼠的性小鼠中诱导了完全或不完全的SCI,并将损伤不完全的人分为低功能恢复组。然后提取sacrocaudal脊髓,并用于研究损伤以下的可塑性,并以幼稚动物的组织为对照。背根的电刺激引起了慢性严重SCI的痉挛性痉挛激活,但不能在对照中进行。为了评估通过感觉刺激激活的总体突触抑制作用,我们测量了脊柱根部恢复的速率依赖性抑郁症。我们发现在慢性损伤模型中抑制性输入受到损害。当药理学上阻断突触抑制时,所有制剂都变得明显痉挛,甚至是对照。但是,慢性损伤的制剂会产生比对照更长的痉挛。然后,我们在感官诱发的痉挛过程中测量了运动神经元的兴奋性突触后术(EPSC)。数据显示EPSC的振幅或动物群中的电导率没有差异。尽管如此,我们发现在慢性SCI中,由EPSC激活的运动神经元持续增强。这些发现表明,运动神经元兴奋性和突触抑制的变化而不是激发会导致痉挛,并且更适合更有效的治疗干预措施。
认知障碍是几种神经退行性和神经发育疾病的主要组成部分,对整个个人,家庭和社会产生深远影响。认知病理学是由多种因素驱动的,从遗传突变和遗传危险因素,神经递质相关功能障碍,局部神经元电路水平的异常连接组和更广泛的大脑网络的范围内,到能够调节内源性因素的环境影响。否则健康的老年人可以预期会遭受某种程度的轻度认知障碍,其中一些属于临床实践中的主观认知缺陷类别,而许多神经发育和神经退行性疾病课程尤其是在痴呆症的范围内,对认知的更深刻改变。我们对这个充分的临床实体调色板根源的潜在神经病理学机制的了解远非完整。本综述着眼于当前关于疾病的健康衰老和认知功能障碍的认知功能的知识,从与生理衰老的轻度认知变化相关的鉴定型诊断元素到与生理衰老的轻度认知变化相关的差异性诊断元素,从而在先进的临床阶段发生了更深刻的异常。i提出了“认知突触病”一词,以涵盖与较高脑功能障碍相关的广泛突触病变。
摘要 经过百余年的发展,铁电材料向人们展示了其强大的潜力,越来越多的铁电材料被用于铁电晶体管(FeFET)的研究中。作为新一代神经形态器件,铁电材料凭借其强大的功能和诸多特性引起了人们的关注。本文总结了近年来铁电材料体系的发展,并探讨了人工突触的模拟。主流的铁电材料分为传统的钙钛矿结构、萤石结构、有机聚合物和新型二维范德华铁电体。介绍了各材料体系的原理、研究进展以及针对类脑计算机的优化,并总结了最新的应用进展。最后讨论了不同材料体系的适用范围,旨在帮助人们根据不同的需求筛选出不同的材料体系。 1. 引言
摘要:帕金森氏病是全球第二常见的神经退行性疾病,其特征是蛋白质沉积物在多巴胺能神经元中的积累。这些沉积物主要由α -syn uclein(α -syn)的聚集形式组成。尽管对这种疾病进行了广泛的研究,但目前只有症状治疗。近年来,已经鉴定出了几种化合物,主要是芳香特征,靶向α -syn自组装和淀粉样蛋白形成。这些化合物是通过不同方法发现的,具有化学多样性,并且表现出了许多作用机制。这项工作旨在提供与帕金森氏病有关的生理病理学和分子方面的历史概述,以及小型复合发育中的当前趋势,以靶向α -Syn聚集。尽管这些分子仍在开发中,但它们构成了发现帕金森氏病有效的抗缔解疗法的重要一步。