摘要 尽管已鉴定出许多免疫突触 (IS) 蛋白种类,但仍有许多 IS 定位蛋白种类未知。了解靶细胞和淋巴细胞之间 IS 的蛋白质组对于推进免疫肿瘤学至关重要。然而,IS 的低丰度和缺乏明确的富集标记阻碍了有效的蛋白质组学分析。在本研究中,我们利用 MicroscoopTM,这是一种集成显微镜、机器学习和光化学标记的创新系统,可以精确且空间特异性地富集 IS 蛋白,从而促进 IS 的蛋白质组学发现。我们使用 Raji B 细胞作为抗原呈递细胞 (APC),并用 Jurkat T 细胞诱导 IS 形成。该系统首先采用 CD3(Jurkat T 细胞中常见的 IS 标记)的免疫荧光成像,并利用基于卷积神经网络的深度学习算法从 CMTPX 染色的 Raji B 细胞中识别 IS 形成。我们的自动化系统通过多轮成像、深度学习驱动的模式生成和光化学标记,成功实现了 IS 处蛋白质的空间靶向生物素标记。随后的链霉亲和素下拉和质谱分析使 IS 特异性蛋白质得以鉴定。值得注意的是,我们的空间蛋白质组学方法分离和鉴定了 IS 界面上的数百种不同物种,包括与 T 细胞受体 (TCR) 信号通路关键成分相关的蛋白质,例如 TCR/CD3 复合物、Src 和 Tec 家族酪氨酸激酶和关键 NF-kB 信号蛋白。此外,我们还发现了大量以前与 IS 不相关的蛋白质。我们的研究不仅阐明了 IS 界面上免疫调节的未知方面,而且对癌症研究具有重要意义,特别是在理解和操纵免疫反应以用于治疗目的方面。
通缉! 名称 α-突触核蛋白,别名:NACP、PARK1/PARK4 地址 染色体 4q22.1 身高/体重 140 个氨基酸,14 kDa 蛋白质 外观 单体,四聚体 α -螺旋寡聚体,与生物膜相关 犯罪聚集体可导致帕金森氏症
有关新一代临床评分系统、实验室参数和成像方法的文献。[4,5,7-11] 预测和预后因素在 AIS 中起着至关重要的作用,为疾病的潜在发展提供了宝贵的见解,并有助于治疗决策。确定可靠的预后指标可使医疗保健专业人员根据个体患者特征量身定制干预措施,优化治疗策略和资源分配。研究人员积极寻求发现新的预测和预后生物标志物,以增强我们对疾病轨迹的理解并改善患者的治疗结果。该领域的进展不仅有助于完善预后模型,还有助于开发靶向疗法,最终为更个性化和更有效的 AIS 管理铺平道路。[1,7-10]
Synapsis Foundation正在为职业发展奖的第一阶段引入两步申请流程。首先,邀请研究人员提交简短的意向书。将选择最令人信服的项目想法,并邀请主要申请人提交完整的建议。所有文件必须使用提供的模板由主要申请人提交,并且必须以英语完成。已经被拒绝的建议只能再提交一次。与先前的提案相比,需要对更改的详细说明。第1步:在第一阶段的意向书,邀请研究人员提交一份意向书,其中包括一个简短的项目大纲。在Synapsis Foundation网站上提供了职业发展奖的意向书模板。意向书包括:
摘要除了长时间的重新布线外,大脑中的突触还会受到在更快的时间表上发生的显着调制,这些时间尺度赋予了大脑的其他处理信息。尽管如此,大脑的模型像复发性神经网络(RNN)经常在训练后冻结了权重,依靠在神经元活动中存储的内部状态来保存与任务相关的信息。在这项工作中,我们研究了仅依赖于推理过程中突触调制的网络的计算潜力和产生的动力学,即过程与任务相关信息,多塑性性网络(MPN)。由于MPN没有复发连接,因此这使我们能够仅由突触调制量研究计算能力和动态行为。MPN的一般性允许我们的结果适用于从短期突触可塑性(STSP)到较慢的调制,例如Spike Time依赖性可塑性(STDP)等较慢。我们彻底检查了经过基于集成任务的MPN的神经种群动力学,并将其与已知的RNN动力学进行了比较,发现两者具有根本不同的吸引子结构。我们发现动态上的上述差异使MPN在几个与神经科学的测试上的表现都优于其RNN对应物。在一系列神经科学任务中训练MPN,我们发现其在这种设置中的计算功能与通过复发连接计算的网络相当。总的来说,我们认为这项工作证明了通过突触调制的计算可能性,并突出了这些计算的重要基线,以便可以在类似大脑的系统中识别它们。
缩写:未检测到的SAA-,α -syn播种聚集体; SAA +,α-突触核蛋白聚集物用与PD和DLB中看到的特征播种一致的聚集谱检测到。考虑年龄,性别和APOEε4状态的差异后,组差异意义。未经调整的结果。b组差异在考虑年龄,性别,apoEε4状态和CSFAβ42水平的差异后的差异。未经调整的结果。
在大脑发育过程中,过量突触被修剪(即删除),部分是由小胶质细胞增多症,而突触的失调会导致行为缺陷。已知P2Y 6受体(P2Y 6 R)调节神经元的小胶质细胞吞噬作用,并调节细胞培养和体内突触的小胶质细胞吞噬作用。但是,目前尚不清楚P2Y 6 R是否调节开发过程中的突触修剪。在这里,我们表明,两性的P2Y 6 R KO小鼠大大降低了突触材料的小胶质细胞内在化,在第30天的CD68染色小胶质细胞(P30)中以VGLUT1测量(P30)(P30),表明降低了合成生的小胶质细胞吞噬作用。与此相一致,我们发现P30处海马的体感皮质和CA3区和齿状回的突触密度增加。我们还表明,根据新的位置识别,新颖的对象识别和Y迷宫记忆测试,成年的P2Y 6 R KO小鼠损害了短期和长期空间记忆和与WT小鼠相对的短期和长期识别记忆的损害。总体而言,这表明P2Y 6 R调节发育过程中突触的小胶质细胞吞噬作用,这有助于记忆力。
高效的硬件-细胞通信对于理解细胞状态和控制细胞至关重要,是推进下一代人机界面的关键途径。在这里,我们提出了一种基于天然纤维素的节能神经装置,解决了传统接口通信硬件的局限性,特别是在材料生物相容性和生物信号匹配方面。基于纤维素的装置有效地模拟了生物突触连接的可塑性,并在低至 10 mV 的连续脉冲刺激下表现出学习行为。值得注意的是,它表现出卓越的数模转换性能,最低功耗为 0.1 nJ,有助于实现高效的界面生物信号匹配。此外,引入了一个分子级模型来阐明电刺激引起的纤维素分子内极性键的旋转。这种旋转改变了材料的相对介电常数,揭示了数模转换能力和类似神经的行为。此外,透明纤维素薄膜既可作为介电层,又可作为机械支撑,使设备能够在各种曲率下保持功能稳定性。这项研究中,基于纤维素的灵活且生物相容性的神经装置不仅可以有效地模拟突触,而且由于其低功耗信号转换,有望在脑机接口应用中实现有效的生物信号匹配。
摘要:帕金森病 (PD) 是一种常见的运动障碍,估计到 80 岁为止,有 4% 的人会患有此病。葡萄糖脑苷脂酶 1 (GBA1) 基因突变是 PD 最常见的遗传风险因素,至少 7-10% 的非德系 PD 个体携带 GBA1 突变 (PD-GBA1)。尽管与特发性 PD 相似,但 PD-GBA1 的临床表现包括发病年龄略低、神经精神症状发生率更高,并且认知障碍往往更早、更普遍且更严重。PD-GBA1 的病理生理机制尚不完全清楚,但与特发性 PD 一样,α-突触核蛋白积累被认为起着关键作用。有人假设这种 α-突触核蛋白的过度表达是由表观遗传修饰引起的。在本文中,我们分析了特发性 PD、PD- GBA1 和老年非 PD 对照者三个不同脑区(额叶皮质、壳核和黑质)中内含子 1 和 α -突触核蛋白 ( SNCA ) 基因启动子内的 17 个 CpG 位点的 DNA 甲基化水平。在这三个脑区中,我们发现特发性 PD 和 PD- GBA1 的内含子 1 的 8 个 CpG 区域内的 DNA 甲基化呈下降趋势。DNA 甲基化降低的趋势在 PD- GBA1 中更为明显,额叶皮质的下降更为显著。这表明 PD- GBA1 和特发性 PD 具有不同的表观遗传特征,并强调了区分特发性 PD 和 PD- GBA1 病例的重要性。这项工作还提供了初步证据,表明 PD 中可能存在不同的遗传亚型,每种亚型都有其自身的病理机制。这可能对 PD 的诊断和治疗方式具有重要意义。
频率依赖性可塑性是指响应不同刺激频率时突触强度的变化。共振是已知在这种频率依赖性中很重要的一个因素,然而,神经噪声在此过程中的作用仍然难以捉摸。考虑到大脑是一个固有的噪声系统,了解其影响可能有助于制定基于非侵入性脑刺激方案的治疗干预措施。威尔逊-考恩 (WC) 模型是一个成熟的模型,用于描述神经群体的平均动态,并且已被证明在存在噪声的情况下表现出双稳态。然而,当皮质群体相互作用时,WC 模型中的不同稳定状态如何影响突触可塑性这一重要问题尚未得到解决。因此,我们研究了基于 WC 的相互作用神经群体与活动依赖性突触耦合模型中的可塑性动力学,其中在受控强度的噪声存在下施加了周期性刺激。结果表明,对于噪声方差的窄范围,突触强度可以得到优化。具体来说,存在一种噪声强度机制,突触强度呈现三重稳定状态。调节噪声强度会影响系统选择其中一种稳定状态的概率,从而控制可塑性。这些结果表明,噪声是决定刺激引起的可塑性结果的一个高度影响因素。