(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年2月25日发布。 https://doi.org/10.1101/2024.02.19.580982 doi:Biorxiv Preprint
与必须为特定任务进行编程的基于计算机的人工智能系统不同,人脑可以实时“自我编程”以创建新策略并适应任意环境。嵌入人工智能系统的计算机执行任意信号处理算法以在特定任务上胜过人类,但如果没有实时自我编程功能,它们就是由人类预先编程的,在预编程领域之外的不可预测环境中失效,并且在任意环境中缺乏一般智能。本文展示了一种在任意和不可预测的环境中实时自我编程的突触电阻电路。通过集成每个突触电阻中的突触信号处理、记忆和相关学习功能,突触电阻电路可以实时同时处理信号和自我编程电路,其能源效率比计算机高出约 6 个数量级。与人类和预编程计算机相比,自编程突触电阻电路动态修改其算法,以在不可预测的空气动力学环境中控制变形机翼,从而以卓越的自编程速度和准确性提高其性能。突触电阻电路有可能绕过计算机的基本限制,从而为人工智能带来具有实时自编程功能的新型智能平台。
抽象应力调节各种记忆系统的活性,从而可以以自适应或适应不良的方式指导与环境的行为相互作用。在细胞水平上,大量证据表明,急性应激暴露引起的(NOR)肾上腺素和糖皮质激素释放会影响突触功能和突触可塑性,这是学习和记忆的关键基础。最近的证据表明,在网络中稀疏分布的神经元在大脑中支持记忆,称为Engram细胞集合。虽然应力对突触的生理和分子影响越来越充分地表征,但这些突触修饰如何塑造Engram Cell集成的多尺度动力学仍然知之甚少。在本综述中,我们讨论并整合有关急性应力如何影响突触功能的最新信息,以及这可能如何改变Engram Cell集成及其突触连接以塑造记忆力强度和记忆精度。我们在压力下提供了一个突触ENGRAM的机械框架,并提出了出色的问题,以解决我们对压力引起的记忆调制基础机制的理解时知识差距。
摘要 - 非形态光子学是一个有前途的研究领域,因为它有可能应对von-Neumann计算体系结构的瓶颈产生的局限性。受到生物大脑的特征和行为的启发,光子神经网络被吹捧为解决需要在低潜伏期和低功耗下运行的复杂问题的解决方案。这种神经网络的基本构建块是低复杂性多重积累操作,为此寻求光学域中的有效功能实现。向这个方向迈出了一个突触受体,该突触受体可以在功能上整合加权和信号检测。通过单片集成的半导体光学放大器和反射性电吸收调制器来完成此光学多重积累操作,该操作将充当无色频率解调器和频率编码信号的检测器。此外,我们表明可以同时处理两个尖峰列车,并以交替的符号处理并将其视为加权总和。通过低位误差比的信号速率低于10 GB/s,提出的突触受体的性能得到了进一步验证。索引项 - 光学信号检测,神经网络硬件,神经形态光子学,突触受体
摘要 研究表明淀粉样蛋白前体 (APP) 调节突触稳态,但证据并不一致。特别是,控制 APP 向轴突和树突中突触运输的信号通路仍有待确定。我们之前已证明亨廷顿蛋白 (HTT)(与亨廷顿氏病有关的支架蛋白)调节神经突触中的 APP 运输,我们使用微流体皮质神经元网络芯片检查 APP 运输和定位到突触前和突触后区室。我们发现,在被 Ser/Thr 激酶 Akt 磷酸化后,HTT 调节轴突中的 APP 运输,但不调节树突中的 APP 运输。不可磷酸化的 HTT 的表达降低了轴突前向 APP 运输,降低了突触前 APP 水平,并增加了突触密度。消除 APPPS1 小鼠体内 HTT 磷酸化,过表达 APP,降低突触前 APP 水平,恢复突触数量,改善学习和记忆。Akt-HTT 通路和 APP 的轴突运输因此调节 APP 突触前水平和突触稳态。
德国神经退行性疾病中心(DZNE),柏林,10117,柏林,德国B神经病学和实验神经病学系,伯林大学弗雷伊大学的公司成员,柏林,伯林,汉堡 - 单位柏林,柏林,柏林,柏林,柏林,柏林,柏林,柏林,柏林,柏林,柏林,1011117,综合与转化生物影像中心,约瑟夫·塞尼德 - 斯特尔斯 - 斯特尔斯堡大学。2,97080,德国杜尔兹堡,柏林卫生研究院(BIH),10178年,柏林,德国E埃德尔E儿科神经病学部,慈善欧洲大学伯林,伯林大学,伯林大学的弗里伊大学,伯林大学,伯林大学,长期病儿童中心,慈善'e-Universit-柏林州柏林,弗雷伊大学的公司成员 - 柏林的弗里伊大学成员 - 伯林的洪堡大学和柏林卫生研究院,柏林,柏林,柏林,柏林,德国G德国G研究所,综合神经疾病研究所。洪堡 - 伯林和柏林卫生研究所,10117,德国H细胞生物学与神经生物学研究所,慈善大学,伯林弗莱伊大学的公司成员,柏林,伯林,汉堡大学,伯林,伯林·伯林·伯林,1011117 Klinikum,柏林 - 布赫,德国J神经临床研究中心,Charit'E -Universit-柏林Atsmedizin berlin,Freie Universit的公司成员 - 柏林的Freie Universit成员,柏林的Humboldt -Universit,柏林的Humboldt -Universit� atsmedizin Berlin, 10117, Berlin, Germany l Gynecology Practice Frauen ¨ arztinnen am Schlo ß , 12163, Berlin, Germany m Department of Obstetrics, Charit ´ e – Universit ¨ atsmedizin Berlin, Corporate Member of Freie Universit ¨ at Berlin, Humboldt-Universit ¨ at Berlin, and Berlin Institute of Health, 10117,柏林,德国n n诊断和人类遗传学中心,10719,柏林,德国
自从 20 世纪中叶麦卡洛克-皮茨神经元 1 和感知器 2 模型诞生以来,人工智能 (AI) 或人工神经网络 (ANN) 在很大程度上仍然是一个计算机科学术语。由于计算能力不足,本世纪后期的进展受到阻碍。1980-2000 年期间的集成电路制造无法在单个处理器和内存芯片上高密度集成晶体管。因此,在深度神经网络 (DNN) 或深度卷积神经网络 (DCNN) 3 上运行模拟并存储指数级累积的数据在时间和能源成本方面是不切实际的,尽管当时 ANN 模型已经相对完善 4-10 。随着芯片密度的提升以及对摩尔定律的追求带来的图形处理单元 (GPU) 等多核处理器的出现,再加上更高效的 ANN 算法 3,11,12,计算能力瓶颈在本世纪初得到成功解决。2012 年,具有十亿个连接的 DNN 被证明能够识别猫和人体等高度概念化的物体 13。同年,DNN 被证明在图像分类准确率方面与人类不相上下(基于 MNIST 数据库),甚至在交通标志识别方面也超越了人类 14。脉冲神经网络 (SNN) 由 Maass 于 1995 年提出 15,16,它采用脉冲
在睡眠期间,发生了几个至关重要的脑稳态过程,包括突触连接的重排,这对于记忆形成和更新至关重要。睡眠还促进了神经毒性废物的去除,其积累在神经变性中起着关键作用。各种神经成分和环境因素调节和影响清醒和睡眠之间的生理转变。在这种复杂系统中的破坏构成了睡眠障碍的基础,如在突触核生物病中所观察到的那样。突触核酸是神经退行性疾病,其特征在于大脑中α-突触核蛋白蛋白聚集体的异常。在不同的大脑区域中积累会导致一系列临床表现,包括低因素,认知障碍,精神病症状和神经疗法障碍。睡眠障碍在突触核心腺病患者中非常普遍,它们不仅会影响患者的整体福祉,而且还会直接导致疾病的严重程度和进展。因此,制定有效的治疗策略以改善这些患者的睡眠质量至关重要。足够的睡眠对于大脑健康至关重要,必须考虑突触中的突触中的作用在破坏睡眠模式中的作用。在这种情况下,必须探索体育锻炼作为一种潜在的非药理学干预措施来管理突触核心腺病患者的睡眠障碍。讨论了有关锻炼计划提高该患者人群睡眠质量功效的当前证据。
引言帕金森氏病(PD)是一种使人衰弱的神经退行性疾病,具有特征性运动障碍,包括刚度,静止震颤和胸肌。许多患者还患有胃肠道症状,例如便秘,通常在特征运动缺陷之前10年或更长时间(1)。PD的病态标志是细胞内蛋白质夹杂物,填充了α-突触核蛋白的纤维化形式,它们在大脑和周围神经系统中均积累。在PD的多巴胺能神经元中,称为Lewy身体的包含物与神经元脆弱性和变性有关(2,3)。贯穿大脑,通常在兴奋性神经元和其他神经元亚型的突触前末端发现α-突触核蛋白,在内吞作用和突触囊泡功能中起作用(4)。 在α-突触核蛋白基因(SNCA)(例如A53T和A30P)以及SNCA基因座的乘法中可能引起家族性PD(5,6)。 α-突触核蛋白蛋白的显着特征之一是将汇总成β-薄片 - 富含蛋白质原纤维的内在能力,这些能力对硫非激素等淀粉样蛋白染料具有很高的亲和力(7-9)。 这些α-突触核蛋白原纤维具有提议的能力,可以在假设的prion样级联反应中扩散相互联系的细胞(10-13)。 转移的α-突触核蛋白可能会在受体细胞中募集天然α-突触核蛋白,从而播种额外的凝结物(14-16),可以形成较大的原纤维和夹杂物(17、18)。 α-突触核蛋白RT Quic分析在DuodeNal活检中证明了PD患者但没有健康对照组的播种活性(20)。贯穿大脑,通常在兴奋性神经元和其他神经元亚型的突触前末端发现α-突触核蛋白,在内吞作用和突触囊泡功能中起作用(4)。在α-突触核蛋白基因(SNCA)(例如A53T和A30P)以及SNCA基因座的乘法中可能引起家族性PD(5,6)。α-突触核蛋白蛋白的显着特征之一是将汇总成β-薄片 - 富含蛋白质原纤维的内在能力,这些能力对硫非激素等淀粉样蛋白染料具有很高的亲和力(7-9)。这些α-突触核蛋白原纤维具有提议的能力,可以在假设的prion样级联反应中扩散相互联系的细胞(10-13)。转移的α-突触核蛋白可能会在受体细胞中募集天然α-突触核蛋白,从而播种额外的凝结物(14-16),可以形成较大的原纤维和夹杂物(17、18)。α-突触核蛋白RT Quic分析在DuodeNal活检中证明了PD患者但没有健康对照组的播种活性(20)。通过新开发的种子聚集试验(包括蛋白质错误折叠的循环扩增和实时Quaking诱导的转换(RT-QUIC)ASSAINS(19),在PD中的存在和脑脊液中的α-突触蛋白原纤维和脑脊液的温度活性已被令人信服地证明。在该测定中触发活性的α-突触核蛋白种子的起源尚不清楚。在大鼠模型中,人们认为触发α-突触核蛋白的病理积累的种子可能起源于神经元和大脑,并落入肠道或肠道中的某个地方并升入大脑(21)。
此预印本版的版权持有人于2025年2月7日发布。 https://doi.org/10.1101/2024.09.23.24313864 doi:medrxiv preprint