神经胶质细胞(星形胶质细胞,少突胶质细胞和小胶质细胞)在中枢神经系统(CNS)的几个生理和病理过程中成为关键参与者。星形胶质细胞和少突胶质细胞不仅是释放营养因子或调节能量代谢的支持性细胞,而且还积极调节三方突触中的关键神经元过程和功能。小胶质细胞定义为提供免疫监测的CNS居民细胞;但是,它们还积极地有助于通过清除细胞碎片或调节突触发生和修剪来塑造神经元微环境。鉴于许多由神经胶质细胞协调的相互连接的过程,急性和慢性中枢神经系统不仅会造成神经元损害,而且还会触发复杂的多方面反应,包括神经素浮肿,包括神经蛋白流量肿瘤,这可以促进疾病进展和症状恶化,这并不奇怪。总体而言,这使胶质细胞成为治疗中枢神经系统疾病的靶向疗法的出色候选者。近年来,基因编辑技术的应用已重新设计了治疗遗传和与年龄有关的神经系统疾病的治疗策略。在这篇综述中,我们讨论了群集的定期间隔短的短膜重复序列(CRISPR)/CAS9基因编辑在神经退行性疾病治疗中,重点是开发基于病毒和纳米粒子的基于病毒和纳米粒子的递送方法,以开发用于体内的细胞靶标。
高压氧疗法(HBOT)最近已成为一种有希望的神经调节方式,用于治疗多种神经系统和心理疾病。各种研究表明,HBOT可以通过调节关键细胞和分子机制来促进脑恢复和神经可塑性。hbot会影响多种主要途径和细胞功能,包括线粒体生物发生和功能(增加了Bcl-2,Bax减少和增强的ATP产生),神经发生(WNT-3和VEGF/ ERK信号的上调),突触发生(gap43和aptaptophys cyseption)和抗激素 - 触发 - α和抗反应(REDIS-INFLOMTIAN-INFLOMANTIS)(升高)。这些机制促进了重大临床益处,例如增强的认知功能,改善了创伤性脑损伤和脑抑制综合征的恢复,以及在创伤后应激障碍和纤维肌痛等疾病中的症状减轻。通过影响这些分子靶标,HBOT提供了一种新型的神经调节方法,需要进一步探索。 本综述讨论了HBOT作用的代表性机制,并强调了其在各种神经和精神病疾病中的治疗性神经调节作用以及潜在的临床应用。通过影响这些分子靶标,HBOT提供了一种新型的神经调节方法,需要进一步探索。本综述讨论了HBOT作用的代表性机制,并强调了其在各种神经和精神病疾病中的治疗性神经调节作用以及潜在的临床应用。
kv7.2由KCNQ2基因编码的亚基构成了M-电流的关键分子成分,M-Current是一个亚阈值电压门控钾电流,通过抑制重复动作电位射击,可控制神经元兴奋性。自1998年以来,KCNQ2中的致病功能丧失变体与癫痫有关,并且有充分的功能证据表明该通道的功能障碍确实会导致神经元过度过度兴奋性。最近由于KCNQ2(KCNQ2-脑病)中有或没有癫痫发作的严重发育延迟的个体的最新描述表明,KV7.2通道在神经发育中也具有重要作用。kv7.2通道在发育中的大脑早期就已经表达了,当关键的发育过程(例如增殖,分化和突触发生)在脑形态发生和成熟中起着至关重要的作用。在这篇综述中,我们将讨论KV7.2渠道在这些神经发育过程中的作用的可用证据,尤其是针对源自KCNQ2相关的人类表型的见解,源自KV7.2的时空表达KV7.2和其他KV7家族成员,以及其他KV7家族成员,以及来自Cellular和Rodent和Rodent模型,以实施策略和研究策略,以实现临界模型和研究策略。最后,我们提出了一个模型,该模型在三个不同的发育阶段将M电流活性划分,与神经元发育中这些特定时期的细胞特征相关,以及如何将其与KCNQ2相关疾病联系起来。了解这些机制可以为KCNQ2-脑病的新靶向疗法创造机会。
摘要:甲状腺激素(Th)对于正常的脑发育,影响神经细胞分化,迁移和突触发生至关重要。在环境中发现了多种内分泌中断化学物质(EDC),这引起了人们对它们对TH信号的潜在影响以及对神经发育和行为的影响的关注。虽然大多数对EDC的研究都研究了单个化学物质的影响,但人类健康可能会受到化学物质混合物的不利影响。EDC暴露对人类健康的潜在后果是深远的,包括免疫功能,生殖健康和神经系统发展的问题。我们假设胚胎暴露于化学物质的混合物(含有酚,邻苯二甲酸盐,农药,重金属和含氟氧化,多氯化和多溴化合物)中,如在人羊膜流体中通常发现的,可能会导致大脑发育的改变。我们评估了其对两栖动物模型(Xenopus laevis)对甲状腺破坏高度敏感的影响。将受精卵暴露于TH(甲状腺素,T 4 10 nm)或羊膜混合物(在实际浓度下),直到达到NF47期,我们在其中使用RT-QPCR和RNA测序分析了thep tadpoles的基因表达。结果表明,尽管存在Th依赖性基因的某些重叠,但T 4和混合物具有不同的基因特征。免疫组织化学显示,在T 4处理的动物的大脑中增殖增加,而羊膜混合物没有观察到差异。此外,我们证明了t端的运动能力减少,以响应T 4和混合物暴露。由于组成混合物的各个化学物质被认为是安全的,因此这些结果突出了检查混合物以改善风险评估的影响的重要性。
孕妇中的阿片类药物使用障碍(OUD)已成为美国的流行病。孕产妇OUD的药理干预措施最常见的是美沙酮,美沙酮是一种合成的阿片类镇痛药,可减轻与药物成瘾有关的戒断症状和行为。然而,美沙酮很容易积聚在神经组织中并引起长期神经认知后遗症的证据引起了人们对其对产前脑发育的影响的关注。我们利用人类皮质器官(HCO)技术来探测这种药物如何影响皮质生成的最早机制。用临床相关剂量的1μm美沙酮慢性处理的2个月大的HCO的大量MRNA测序持续50天,发现对美沙酮与突触的功能成分,潜在的细胞外基质(ECM)和纤毛相关的白沙酮有牢固的转录反应。共表达网络和预测蛋白 - 蛋白质相互作用分析表明,这些变化发生在协同中,以生长因子,发育信号通路和矩阵蛋白(MCP)的调节轴为中心。tgfβ1被鉴定为该网络的上游调节剂,并作为高度相互联系的MCP群的一部分,其中血小板传播1(TSP1)最为突出地下调,并表现出蛋白质水平的剂量依赖性降低。这些结果表明,皮质早期发育过程中的美沙酮暴露会改变与突触发生相关的转录程序,并且这些变化是通过功能调节ECM和纤毛中突触外分子机制而产生的。我们的发现提供了对美沙酮对认知和行为发展的推定作用的分子基础的新见解,以及改善母体阿片类药物成瘾的干预措施的基础。
抽象幻觉是一种感官感知,在异常的神经系统障碍和各种精神疾病中没有外部刺激的情况下发生。幻觉被认为是一种核心精神病症状,在精神分裂症患者中尤其普遍。引人注目的是,许多患有阿尔茨海默氏病(AD),帕金森氏病(PD),亨廷顿氏病(HD)的受试者以及其他神经系统疾病(如大脑中风和癫痫发作)也经历了幻觉。虽然异常神经传递与精神分裂症的神经病事件有关,但涉及幻觉的精确细胞机制仍然晦涩难懂。神经发生是一种细胞过程,是从大脑中神经干细胞(NSC)衍生的神经细胞产生新神经元的一种细胞过程,有助于调节模式分离,情绪,嗅觉,学习和成年期的记忆。成人大脑海马中的神经发生受损与压力,焦虑,抑郁和痴呆有关。值得注意的是,许多神经退行性疾病的特征是神经细胞的有丝分裂和功能激活以及成熟神经元的细胞周期重新进入,从而导致神经发生过程的急剧改变,称为活性神经细胞。考虑其神经生理特性,神经细胞异常整合到现有的神经网络中或撤回其连接可能会导致异常的突触发生和神经传递。最终,预计这会导致幻觉的看法改变。因此,本文强调了一个假设,即反应性神经母细胞增多的异常神经源过程可能是精神分裂症和其他神经系统疾病中幻觉的基本机制。
抽象背景:自闭症是一种异质性神经发育状况,伴随着大脑连通性的差异。自闭症中的结构连通性主要在白质中进行了研究。然而,许多与自闭症相关的遗传变异突出了与突触发生和轴突引导有关的基因,因此也暗示了自闭症中固有(即灰质)连接的差异。可以通过所谓的内在全球和本地布线成本在体内评估内在连接。方法:在这里,我们检查了359名自闭症患者的大脑内部全球和本地布线成本,以及279名健康对照参与者,年龄在欧盟AIMS LEAP(纵向欧洲自闭症项目)的6至30岁之间。freeSurfer用于得出表面网格表示,以计算灰质内大脑所需的估计连接长度。certexwise的组间差异。进行了基于艾伦人脑图集的基因表达解码分析,以将神经解剖学差异与推定的基础联系起来。结果:全球和局部接线成本的群体差异主要是在内侧和侧额前脑区域,下颞区和左颞叶脑交界处观察到的。所产生的神经解剖模式富含以前与遗传和转录组水平上自闭症病因的基因。结论:基于固有的灰质连通性,当前的研究研究了自闭症的复杂神经解剖结构,并将小组间差异与推定的基因组和/或分子机制联系起来,以解析自闭症的异质性,并为未来的亚组方法提供了靶标。
本报告概述了一个复杂的神经系统表型的临床特征和金发)。癫痫发作和脑萎缩后来很明显。在Cosegregation分析中,通过全外观和Sanger测序研究了五个家庭成员和12个家庭对照。探索了蛋白质的结构和功能效应,以定义突变变体的潜在有害损害。进行了神经系统和神经心理学随访以及脑磁共振成像(MRI)。我们确定了SPAG9/JIP4基因(NM_001130528.3)中的单个载体纯合核苷酸缺失:c.2742del(p。tyr914ter),导致过早的终止密码子并截断蛋白质并截断蛋白质并引起了功能的可能丧失。在受影响个体中被视为常染色体隐性性状的变体。硅蛋白功能分析中表明66个磷酸化和29个翻译后修饰位点的潜在损失。此外,突变的蛋白质结构模型显示了折叠的显着修饰,很可能会损害功能相互作用。SPAG9/JIP4是一种用于逆行轴突运输的动力蛋白 - 二奈氏蛋白运动适配器,可调节神经营养因子信号传导和自噬 - 溶酶体产物的组成型运动。在应力条件下,它可以通过p38丝裂原激活的蛋白激酶(p38mapk)信号级联反应增强这种运输。这两个功能都可以与疾病机制相关,改变了轴突的发育和生长,神经元规范,树突形成,突触发生,神经元修剪,回收神经递质的回收,最后,神经元稳态(神经元稳态)(神经元稳态)(神经元稳态) - 可用于神经化疾病和神经衰变的常见机制。
嘌呤能信号传导与与脑发育有关的多种过程的控制,例如神经发生和神经胶质发生,神经元前体的迁移和分化,突触发生和突触消除,以实现完全有线和有效的成熟大脑。因此,通过刺激特定的腺苷和嘌呤能受体亚型介导的嘌呤依赖性信号传导:P1,P2X或P2Y,都可以导致功能性缺陷以及神经精神疾病的发展,包括自闭症谱系(包括自闭症谱系)(ASD)。在这项研究中,我们研究了在ASD动物模型中,大鼠脑发育过程中选定的嘌呤能受体的表达和活性变化。怀孕的大坝在神经管闭合时,在胚胎日(ED)12.5接受了腹膜内注射VPA(450 mg/kg体重)。随后,在ED19上分析了特定嘌呤能受体亚型的表达和活性的变化,ED19是大脑发育的重要产前阶段。我们的结果表明,产前VPA暴露会导致腺苷能受体A2B和A3的水平和活性显着增加,这些水平和活性与祖细胞增殖和神经的调节有关,以及嘌呤能P2X2/p2x3受体的上调,这可能会导致后代的Neunate and and ant ant ant ant ant neunatic and and and ant ant ant ant ant ant and and ant ant and and ant ananatic and and and ananatial neanatist and andanation。总而言之,产前VPA诱导的嘌呤能信号传导缺陷可能会对胚胎发生期间的脑发育产生深远的影响,并在出生后对智力和行为功能产生影响。相反,P2Y1和P2X7受体的显着下调以及它们在胚胎VPA脑中的活性降低,可能表明神经元前体迁移和分化过程,树突状和轴突形成的过程中的干扰以及谷氨酸/GABA IMBALANCE,从而改变神经元的神经元素。这些观察结果可以为未来实施ASD的潜在治疗策略提供线索。
摘要:胶质细胞对于在发育,衰老和疾病期间的大脑功能至关重要。然而,星形胶质体在大脑发育过程中发挥作用与成人病变大脑中所起的作用完全不同。因此,对衰老的大脑和脑血管疾病中星形胶质细胞活性下的病理机制的更深入了解对于指导新的治疗策略的发展至关重要。为此,本综述提供了在发育,衰老和神经退行性疾病(包括脑缺血)过程中星形胶质细胞的转录组活性之间的比较。在胎儿脑发育期间,星形胶质细胞和小胶质细胞通常会影响相同的发育过程,例如神经/神经胶质发生,血管生成,轴突生长,突触发生和突触修剪。在成人大脑中,通过介导突触消除,而小胶质细胞活性与突触可塑性的变化相关,并通过不断感测环境来消除细胞碎片,而成人大脑星形胶质细胞是突触重塑的关键参与者。然而,在病变的大脑星形胶质细胞中,对神经元的能量供应,神经传递和堆积的保护性疤痕隔离病变部位,从周围环境中散发出了重要的功能。炎症,神经变性或脑稳态的丧失会诱导小胶质细胞基因表达,形态和功能的变化,通常称为“启动”小胶质细胞。基因表达的这些变化的特征是吞噬体,溶酶体和抗原表现信号传导途径的富集,并与编码细胞表面受体的基因上调有关。此外,底漆的小胶质细胞的特征是基因网络响应干扰素伽玛的上调。结论。在大脑发育,衰老和神经退行性疾病期间,星形胶质细胞转录组活性的比较可能会为我们提供新的治疗策略,以保护大脑衰老并改善临床结果。关键词:星形胶质细胞,小胶质细胞,大脑,发育,转录组学,神经变性,当前几乎无法获得衰老大脑和脑血管疾病的神经保护疗法。胶质细胞对于