摘要:由专门的蛋白质形成的突触蛋白– DNA复合物,在DNA上桥接两个或多个远处的位点,与各种遗传过程至关重要。然而,蛋白质搜索这些位点及其如何将它们结合在一起的分子机制尚不清楚。我们以前的研究直接可视化了SIFI使用的搜索途径,并确定了两种途径,DNA螺纹和站点结合的传输途径,这是突触搜索突触DNA-蛋白系统的现场搜索过程的特定。为了研究这些现场搜索途径背后的分子机制,我们将SIFI的复合物与对应于不同瞬态状态相对应的各种DNA底物组装,并使用单分子荧光方法测量了其稳定性。这些组件对应于特定的特定(突触),非特定特异性(非特殊)和特定的特异性(突触前)SIFNA状态。出乎意料的是,发现与特定和非特异性DNA底物组装的突触复合物的稳定性提高。解释这些令人惊讶的观察结果,一种理论方法,描述了这些复合物的组装并将预测与实验进行了比较。该理论通过利用熵参数来解释这种效果,根据该论点,在部分解离之后,非特定的DNA模板具有重新启动的多种可能性,从而有效地提高了稳定性。与特定和非特异性DNA相稳定性的稳定性差异解释了在延时AFM实验中发现的突触蛋白– DNA复合物的搜索过程中螺纹和位点结合的转移途径的利用。
摘要:由专门的蛋白质形成的突触蛋白-DNA复合物在DNA上桥接两个或更多远处的蛋白质,与各种遗传过程至关重要。然而,蛋白质搜索这些位点及其如何将它们结合在一起的分子机制尚不清楚。我们以前的研究直接可视化了SFII使用的搜索途径,我们确定了两种途径,即DNA螺纹和站点结合的传输途径,特定于突触DNA-蛋白系统的现场搜索过程。为了研究这些位点搜索途径背后的分子机制,我们将SFII的复合物与与不同瞬态状态相对应的各种DNA底物组装在一起,并使用单分子荧光方法测量了其稳定性。这些组件对应于特定特异性(突触),非特异性非特异性(非特异性)和特定的非特异性(突触前)SFII-DNA状态。出乎意料的是,已经发现了与特异性和非特异性DNA底物组装的突触前复合物的稳定性升高。解释了这些令人惊讶的观察,一种理论方法描述了这些复合物的组装并将预测与实验进行比较。该理论通过利用熵参数来解释这种效果,根据该论点,在部分解离之后,非特异性DNA模板具有重新启动的多种可能性,从而有效地提高了稳定性。与特定和非特异性DNA的SFII复合物的稳定性差异解释了在延时AFM实验中发现的突触蛋白-DNA复合物的搜索过程中螺纹和部位结合的转移途径的利用。
。CC-BY-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2021 年 12 月 17 日发布。;https://doi.org/10.1101/2021.12.16.472938 doi:bioRxiv 预印本
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2025年1月17日发布。 https://doi.org/10.1101/2025.01.16.633314 doi:biorxiv Preprint
摘要:母体糖尿病与后代神经发育障碍的更大风险有关。已经确定高血糖会改变调节脑发育过程中神经干细胞(NSC)命运的基因和microRNA(miRNA)的表达。在这项研究中,在从糖尿病小鼠胚胎的前脑中获得的NSC中分析了甲基-CPG结合蛋白-2(MECP2),一种全球染色质组织者和突触蛋白的关键调节剂。与对照组相比,在糖尿病小鼠胚胎的NSC中,MECP2显着下调。miRNA靶标的预测表明,miR-26家族可以调节MECP2的表达,并进一步验证MECP2是miR-26b-5p的靶标。mecp2敲低或miR-26b-5p的过表达改变了tau蛋白和其他突触蛋白的表达,这表明miR-26b-5p通过MECP2改变了神经突的产物和突触发生。这项研究表明,母体糖尿病在NSC中上调了miR-26b-5p的表达,导致其靶标MECP2的下调,进而使神经突的产物和突触蛋白的表达呈现。总体而言,高血糖失调会突触发生,这可能表现为糖尿病妊娠后代的神经发育障碍。
。cc-by 4.0未经同行评审获得的未获得的国际许可证是作者/筹款人,他已授予Biorxiv的许可证,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年7月23日。; https://doi.org/10.1101/2024.07.22.604680 doi:biorxiv Preprint
psilocybin是一种天然发生的色氨酸生物碱前药,目前正在研究用于治疗一系列精神疾病。临床前报告表明,含psilocybin的蘑菇提取物或“全光谱”(迷幻)蘑菇提取物(PME)的生物学作用可能与化学合成的psilocybin(PSIL)的生物学作用可能不同。我们将PME与PSIL的影响对雄性C57BL/6J小鼠中的神经可塑性相关的突触蛋白和额叶皮层代谢组纤维的影响,神经可塑性相关的突触蛋白和额叶皮层代谢组纤维的影响。HTR测量在20分钟内显示出PSIL和PME的相似作用。脑标本(额叶皮层,海马,杏仁核,纹状体)使用蛋白质印迹分析突触蛋白,GAP43,PSD95,Synaptophysin和sv2a。这些蛋白质可以用作突触可塑性的指标。治疗三天后,突触蛋白的增加最少。11天后,额叶皮层中的PSIL和PME显着增加了GAP43(分别为p = 0.019; p = 0.039)和海马(P = 0.015; p = 0.027; p = 0.027)和突触possinpocyin and Synaptophysin在海马中(p = 0.041; p = 0.041; p = 0.05)和am amy; p = 0.03(p = 0.03)(p = 0.03);psil在杏仁核中增加了SV2A(p = 0.036),并且PME在海马中这样做(p = 0.014)。在纹状体中,仅PME增加突触素(P = 0.023)。分别分析这些大脑区域对PSD95的PSIL或PME对PSD95没有显着影响。与氧化应激和能量产生途径相关的嘌呤鸟嘌呤,甲黄嘌呤和肌苷显示出从车辆到PSIL再到PME的逐渐下降。的嵌套方差分析(ANOVA)显示,在所有大脑区域中,四种蛋白质中的每一种都显着增加,以进行PME和媒介物控制,而仅在海马和杏仁核中观察到显着的PSIL效应,并且仅在Hippocampus和Amygdala中观察到,并且仅限于PSD95和SV2A。利用毛细管电泳的非靶向极性代谢组学 - 傅立叶变换质谱法(CE-FEFTM)进行了前额叶皮层的代谢组学分析,并在PME和媒介物组之间显示出差异代谢分离。总而言之,我们的突触蛋白发现表明,PME对突触可塑性具有比PSIL更有效,更长时间的作用。我们的代谢组学数据支持从惰性车辆通过化学psilocybin到PME的梯度进一步支持差异效应。需要进一步的研究来确认和扩展这些发现,并确定与单独使用psilocybin相比,可能导致PME效应增强的分子。
材料和方法:在这项研究中使用了36个成年雄性白化大鼠,年龄4至6个月,重200-250克。动物分为四组。第I组:包括18只大鼠,并将同样细分为三个亚组;每个6只老鼠。 II组:包括6只大鼠,每天都会通过胃烤每天接受Panax人参。 第三组:包括6只大鼠,这些大鼠接受了单次腹膜内注射STZ以诱导DM。 第四组:包括6只大鼠DM被诱导,然后每天给大鼠Panax人参。 2周后,牺牲动物,并剖析大脑。 制备了海马的石蜡块,并用苏木精,曙红和cresyl紫色染色,而其他切片则是免疫组织化学治疗以检测GFAP和突触蛋白的。 对一些测量参数进行了统计分析。第I组:包括18只大鼠,并将同样细分为三个亚组;每个6只老鼠。II组:包括6只大鼠,每天都会通过胃烤每天接受Panax人参。 第三组:包括6只大鼠,这些大鼠接受了单次腹膜内注射STZ以诱导DM。 第四组:包括6只大鼠DM被诱导,然后每天给大鼠Panax人参。 2周后,牺牲动物,并剖析大脑。 制备了海马的石蜡块,并用苏木精,曙红和cresyl紫色染色,而其他切片则是免疫组织化学治疗以检测GFAP和突触蛋白的。 对一些测量参数进行了统计分析。II组:包括6只大鼠,每天都会通过胃烤每天接受Panax人参。第三组:包括6只大鼠,这些大鼠接受了单次腹膜内注射STZ以诱导DM。 第四组:包括6只大鼠DM被诱导,然后每天给大鼠Panax人参。 2周后,牺牲动物,并剖析大脑。 制备了海马的石蜡块,并用苏木精,曙红和cresyl紫色染色,而其他切片则是免疫组织化学治疗以检测GFAP和突触蛋白的。 对一些测量参数进行了统计分析。第三组:包括6只大鼠,这些大鼠接受了单次腹膜内注射STZ以诱导DM。第四组:包括6只大鼠DM被诱导,然后每天给大鼠Panax人参。 2周后,牺牲动物,并剖析大脑。 制备了海马的石蜡块,并用苏木精,曙红和cresyl紫色染色,而其他切片则是免疫组织化学治疗以检测GFAP和突触蛋白的。 对一些测量参数进行了统计分析。第四组:包括6只大鼠DM被诱导,然后每天给大鼠Panax人参。2周后,牺牲动物,并剖析大脑。制备了海马的石蜡块,并用苏木精,曙红和cresyl紫色染色,而其他切片则是免疫组织化学治疗以检测GFAP和突触蛋白的。对一些测量参数进行了统计分析。
摘要越来越多的研究将大噬菌/自噬的功能障碍与阿尔茨海默氏病(AD)等疾病的发病机理联系起来。鉴于自噬对体内平衡的全球重要性,其功能障碍如何导致特定的神经系统变化令人困惑。为了进一步研究这一点,我们使用ATG7 IKO比较了成年小鼠自噬的全局失活,并与AD相关的致病性变化在突触蛋白的自噬处理中的影响。孤立的前脑突触体,而不是来自ATG7 IKO小鼠的总匀浆,表现出突触蛋白的积累,这表明突触可能是蛋白质稳态破坏的脆弱部位。此外,自噬的停用导致随着时间的推移会导致认知表现受损,而大型运动技能仍然完好无损。尽管自噬停用了6.5周,但在没有细胞死亡或突触丧失的情况下,认知的变化是。在AD的症状应用PSEN1 PSEN1双转基因小鼠模型中,我们发现自噬体成熟的障碍与从这些小鼠分离的自噬体中离散的突触蛋白的存在减少,从而导致这些蛋白质中的一种在洗涤剂无效的蛋白质蛋白质中积累。该蛋白质,SLC17A7/VGLUT,也积聚在ATG7 IKO小鼠突触体中。综上所述,我们得出结论,突触自噬在主要促进蛋白稳态中起作用,并且在降低自噬会中断正常的认知功能的同时,运动的保存表明并非所有电路都受到类似的影响。我们的数据表明,AD中自噬活性的破坏可能与这种成人发作神经退行性疾病的认知障碍有关。缩写:2Drawm:2天径向臂水迷宫;广告:阿尔茨海默氏病; Aβ:淀粉样蛋白β; AIF1/IBA1:同种异体移植炎症因子1;应用:淀粉样蛋白β前体蛋白; ATG7:自噬相关7; AV:自噬液泡; CCV:货物捕获价值; CTRL:控制; DLG4/PSD-95:光盘大型Maguk支架蛋白4; GFAP:神经胶质原纤维酸性蛋白; grin2b/nmdar2b:谷氨酸离子型热带受体NMDA型亚基2B;有限公司:长期抑郁症; MAP1LC3/LC3:微管相关蛋白1轻型链3; m/o:几个月大; PNS:核后上清液; PSEN1/PS1:Presenilin 1; SHB:蔗糖均质化缓冲液; SLC32A1/VGAT:Solute Carrier家族32成员1; SLC17A7/VGLUT1:Solute Carrier家族17成员7; SNAP25:突触体相关蛋白25; SQSTM1/p62:隔离1; Syn1:Synapsin I; SYP:突触素; SYT1:Synaptotagmin 1;塔姆:他莫昔芬; VAMP2:囊泡相关的膜蛋白2; VCL:Vinculin; WKS:几周。
了解突触核素蛋白在体外和细胞中如何形成淀粉样蛋白如何对了解疾病至关重要。先前的研究表明,α-突触核蛋白的P1区(残基36-42)控制淀粉样蛋白的形成。我们在这里报告了在两个患有肌萎缩性侧面硬化症的个体中发现的γ-突触蛋白(γSyn)(Met38至Ile)的P1区域中的单个核苷酸多态性。两个个体在同一基因(glu110 to val)中都有第二个多态性,通常在普通人群中发现。我们表明,ILE38-含有γ静态形式的淀粉样蛋白在体外快速淀粉样蛋白,而Met38并未聚集成淀粉样蛋白,而Val110具有保护性,从而减慢了聚集。结果突出了P1序列在蛋白质淀粉样蛋白倾向之间平衡的关键作用。