染色质相关的非编码RNA通过靶向基因组基因座在各种细胞过程中起重要作用。存在两种类型的全基因组NGS实验来检测此类靶标:“一到全部”,该目标的重点是单个RNA的靶标和“全能”,该目标捕获了样本中所有RNA的靶标。与许多NGS实验一样,它们容易出现偏见和噪声,因此检测“峰” - RNA与基因组靶标的特定相互作用至关重要。在这里,我们提出了Bardic - 二项式RNA-DNA相互作用调用器 - 一种量身定制的方法,可检测两种类型的RNA-DNA相互作用数据中的峰值。Bardic是同时考虑数据中两个最突出的偏见的第一个工具:染色质异质性和相互作用频率的距离衰减。由于RNA的相互作用偏好不同,因此根据单个RNA的丰度和接触模式,Bardic适应了峰值大小。这些功能使Bardic能够比当前应用的峰值呼叫算法做出更强大的预测,并更好地处理全部数据的特征性稀疏性。Bardic软件包可以在https://github.com/dmitrymyl/bardic上免费获得。
光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
西班牙战略研究所的这份战略文件是由联盟当局和西班牙学者组成的一个精选小组利用在马德里批准新战略概念的机会撰写的,旨在反映西班牙对大西洋联盟的承诺及其对《华盛顿条约》宣扬的个人自由、民主和法治的共同价值观的捍卫,西班牙作为负责任、坚定和可靠的合作伙伴捍卫这些价值观。
UNGA79高级周,美国纽约,欧洲大脑委员会(EBC),脑资本联盟和赖斯大学的贝克公共政策研究所将在联合国大会第79届联合国大会与合作伙伴组织合作举行为期两天的,高级的侧面活动,在伙伴组织的框架内,在UNICTING NECTER GERSALDBLY-GERASSBLY-GERDENBLEBLEND-NEW-GERT-GERTEN-GERT-GERTEN-GERT-GERTEN-NEW-GERT-GERTEN-NEW-GERT-GERTEN-NEW-eark New new new York 7中)进行。符合科学峰会检查政策,实施和维持支持全球科学合作所需的科学机制所需的政策,监管和财务环境的核心重点,为期两天的活动将突出现有的伙伴关系,以及在神经科学,研究和研究,研究和治疗学以及神经学以及神经和精神障碍的居民rebabilitation and Rebilitation and Repedies中的全球合作的潜力。脑部疾病 - 包括神经系统疾病,疾病和精神疾病 - 是广泛的,残疾和难以治疗的。其中包括一系列疾病:癫痫,抑郁症,阿尔茨海默氏病,多发性硬化症,帕金森氏症,抑郁症,中风,精神分裂症,头痛,焦虑症,慢性疼痛和稀有脑部疾病,例如蛋白质营养性侧外嗜性巩膜症(ALS),肌张力障碍和共济失调。实际上,据估计,全世界多达十亿人患有神经系统疾病,全球9.7亿人患有精神健康障碍,截至2019年,焦虑和抑郁症是最常见的。这些条件代表了高个性,社会和经济负担,并导致全球疾病负担和残疾。此外,我们需要建立超越负担,并致力于认识到大脑健康的潜力。最好,它使人们能够蓬勃发展:生活在健康和幸福中,为我们的劳动力市场和经济提供动力,并为子孙后代建造。,政策制定者和整个社会不应将大脑健康,研究和创新的优先级和支持视为对预防,健康和优化的投资,而不是剥离成本,而是为世界上每个公民创造了更美好的未来。为巩固全球脑部健康努力的明确和切实的下一步努力,这将展示在全球范围内所有政策中优先考虑大脑健康的重要性和紧迫性,并建立在去年活动期间发起的行动呼吁的基础上。解决全球脑部疾病的巨大负担意味着在脑健康领域进行研究和创新的投资,以为我们对大脑的理解提供力量,以寻求治疗,治愈和努力,以防止这些疾病的患病率进一步提高。此外,在社会经济层面上,提高脑力的政策和投资可以提高生产力,刺激更大的创造力和经济活力,得到社会凝聚力,并创造更具弹性,适应能力和可持续性的人群。来自整个大脑社区的主要利益相关者 - 科学,临床,经济,工业和其他相关参与者将开会他们的工作,并共同创造进一步的行动,以将大脑健康置于后可持续发展的发展目标(SDGS)时代的全球政策议程中。这一行动是非常及时的,尤其是当我们进入2024年时,全球64个国家将举办重大选举,我们目睹了重大的政治,经济和整体社会转变和不稳定的时代。此外,在全球范围内,联合国进入了未来的准备时期,未来的峰会在UNGA79期间开始到
1美国伊利诺伊大学伊利诺伊大学贝克曼高级科学技术学院; 2美国密歇根大学心理学系; 3美国东北大学心理学系; 4英国伯明翰大学心理学学院; 5美国国家老化研究所; 6伊利诺伊大学Urbana-Champaign伊利诺伊大学生物工程系; 7伊利诺伊大学Urbana-Champaign大学的神经科学计划; 8伊利诺伊州伊利诺伊大学心理学系美国乌尔巴纳 - 春恩市,美国跑步跑者:人脑功能的三峰影像图:5(+ 2补充)相应的作者:Matthew Moore,PhD,PhD和Florin Dolcos和Florin Dolcos,Phd Beckman Beckman beckman Institute of Illinois of Illinois of Illinois of Illinois-Champaign-Champaign 405 North Mathenews Avenue avenue avenue in/Northair of timage of。
光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
I. i ntroduction t wo-photon吸收(TPA)成像吸引了许多学科的许多兴趣,例如生物学,医学,材料和纳米技术[1] - [4]。tpa固有地是一个非线性过程,其中通过同时吸收两个光子来实现从基态到激发态的转变。这启用了独特的微观技术,即两光子荧光显微镜[1],可以在复杂的生物样本中进行更深入的渗透和更好的三维分辨率[5]。最近,TPA的非线性响应探索了半导体中的非线性响应,尤其是在光dectortor中[6] - [8]。与晶体中的其他光学非线性过程不同,例如第二次谐波,KERR效应,半导体中的TPA可以在时间门控中超快[7],对时间相变化和极化不敏感[9],为成像目的提供了独特的机会[9]。例如,已经证明类似于光学相干断层扫描(OCT)配置的TPA成像[10]对时间和空间湍流不敏感[9],该[9]可用于通过不透明的散射介质进行成像[11]。超过三维中级成像[12],可以使用非排效的TPA获得,其不冷的GAN光电二极管具有与传统的液态硝基冷却的HGCDTE(MCT)检测器相当的效率[8] [8],在其中扩展了Nondegenerate TPA,可以扩展到探测范围,并延伸到辅助范围中。超过三维中级成像[12],可以使用非排效的TPA获得,其不冷的GAN光电二极管具有与传统的液态硝基冷却的HGCDTE(MCT)检测器相当的效率[8] [8],在其中扩展了Nondegenerate TPA,可以扩展到探测范围,并延伸到辅助范围中。
空间应用是自1958年首次应用硅太阳能电池作为卫星电源以来的光伏(PV)的主要驱动力。[1]此外,依赖于带有交错带盖的子灯的互补吸收的现代多期技术的开发主要是由空间应用驱动的。当今的最先进的市售空间PV为III – V/GE半导体基于三重(3J)连接空间太阳能电池,可达到30%的效率。[2–4]这些高性能细胞需要单晶,低缺陷的外延生长方法,这些方法本质上是昂贵的。可获得的III – V,包括INGAP/GAAS/GE吸收剂在GE底物上生长。他们是