结果:在研究期间,有25名儿童被诊断出患有APW。13例男性(52%),患者的中位年龄为三个月(8天至7.5岁)。两名患者在首次入院时通过超声心动图被诊断为冠状动脉瘘,并在导管后被诊断为APW。APW,以解决大型心室间隔缺陷。根据STS分类,患者中有32%(n = 8)为III型,32%(n = 8)为I型,16%(n = 4)是中间类型,12%(n = 3)为II型,4%(n = 1)为APW,APW aPW伴有主动脉中断。相关的心血管畸形为76%(n = 19)。15例患者(60%)接受了手术。在四名患者(16%)中进行了APW的经导管闭合。在四名患者(16%)中进行了APW的经导管闭合。
摘要。最近已经开发了许多基于新颖的玻璃设计,低发射率薄片涂层以及专有荧光中间层类型的现代玻璃和窗户产品。当今的高级窗户可以控制诸如热发射,热量增益,颜色和透明度之类的属性。在新型的玻璃产品中,还通过图案化的半导体薄膜能量转换表面或使用发光浓度型方法来实现较高的透明度。通常,对于建筑行业和农业的应用(温室)应用,半透明的和高度透明的PV窗口是专门设计的,包括特殊类型的发光材料,衍射微结构,定制的玻璃系统和电路。最近,在构建集成的高透明太阳能窗口中已经证明了显着的进步(具有高达70%的可见光传输,电力输出p max 〜30 33 w p /m 2,例如< /div>,ClearVue PV太阳能窗);这些预计将在温室装置中为智能城市和先进的Agrivoltaics的发展增加动力。目前(2023年),这些ClearVue窗口设计是唯一可以在建筑物中提供明显的能源节省的视觉清晰和部署的建筑材料,同时又具有大量可再生能源的能源。这项研究的目的是将ClearVue®PV窗口系统的最新工业化开发置于发光浓缩器领域中先前研究的更广泛的背景,并提供一些有关在研究温室建筑物包裹中部署的几种Clearvue窗口设计类型的测量性能特征的细节,以阐明其能量差异,并在其相应的差异中进行了差异。提供了这些最近开发的透明Agrivoltaic建筑材料的实际应用潜力的评估,重点关注可再生能源产生数字以及在一项长期研究中观察到的季节性趋势。本文报道了2021年初在默多克大学(澳大利亚珀斯)建造的基于研究温室的Agrivoltaic装置的测量绩效特征。默多克大学的太阳能温室已经证明了由于其建筑物的现场能源生产而产生的明显节省的商业粮食生产潜力。
摘要:随着物联网 (IoT) 设备的日益普及,其安全性也成为一个日益重要的问题。缓冲区溢出漏洞已为人所知数十年,但仍然存在,尤其是对于嵌入式设备而言,由于硬件限制或仅仅由于对性能的影响而无法实施某些安全措施。因此,许多缓冲区溢出检测机制仅在使用关键数据之前检查溢出。攻击者可以用于自己目的的所有数据都可以被视为关键数据。因此,在写入缓冲区和使用缓冲区之间检查所有关键数据至关重要。本文介绍了数百万台物联网设备中使用的 ESP32 微控制器的一个漏洞,该漏洞基于不受传统缓冲区溢出检测机制(如 Stack Canaries 或 Shadow Stacks)保护的指针。本文讨论了漏洞的影响,并介绍了修复漏洞的缓解技术(包括补丁)。使用模拟以及 ESP32-WROVER-E 开发板评估了补丁的开销。我们发现,在使用 32 个通用寄存器的模拟中,CoreMark 基准的开销介于 0.1% 和 0.4% 之间。在使用具有 64 个通用寄存器的 Xtensa LX6 内核的 ESP32 上,开销降至 0.01% 以下。由综合基准模拟的最坏情况显示开销高达 9.68%。
北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 Priyanka Agrawal 北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 Mageshwari Komarasamy 北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 Yongo Sohn 中佛罗里达大学材料科学与工程系和先进材料加工与分析中心,美国佛罗里达州奥兰多 Rajiv S. Mishra 北德克萨斯大学材料科学与工程系搅拌摩擦加工中心,美国德克萨斯州登顿 北德克萨斯大学先进材料与制造工艺研究所,美国德克萨斯州登顿
深度学习模型在分析高维功能MRI(fMRI)数据的分析方面已使性能飞跃。然而,许多以前的方法对各种时间尺度的上下文表示次优敏感。在这里,我们提出了螺栓,这是一种血氧级依赖性变压器模型,用于分析多变量fMRI时间序列。螺栓利用一系列具有新型融合窗户注意机制的变压器编码器。编码是在时间序列中的时间段窗口上执行的,以捕获本地表示。为了暂时整合信息,在每个窗口中的基本令牌和来自相邻窗口的边缘令牌之间计算跨窗口的注意力。逐渐从局部到全球表示,窗口重叠的程度以及在整个级联反应中的数量逐渐增加。最后,一种新型的跨窗口正规化用于整个时间序列的高级分类特征。大规模公共数据集的全面实验证明了螺栓对最新方法的出色性能。此外,解释性分析是为了确定有助于建模决策最大程度贡献的具有里程碑意义的时间点和区域,证实了文献中突出的神经科学发现。
摘要:如今,基于用于储能的共轭聚合物的电活性材料和电致色素窗口应用,由于其低成本,可访问的合成程序和有趣的电化学特性引起了巨大的兴趣。在此,我们报告了具有不同长度和功能侧链的两个丙二甲基二苯乙烯(Prodot)的聚合物的性能,这些聚合物经过探讨,以评估其对这些应用的潜力。通过氧化化学聚合物化获得聚合物,并从有机溶剂中加工成具有不同分子组件的薄涂层。对其化学结构以及光学和电化学特征的初步研究进行了证明,以证明它们如何受到侧链取代特性的影响。当在三电极细胞配置中测试为电极材料时,合成的基于Prodot的聚合物提供的最高特异性电容为1.059 MF/cm 2
摘要 — 需要反复校准并考虑受试者间差异是脑机接口实际应用面临的主要挑战。由于病变导致的神经动力学改变,解码中风患者的脑信号时,问题变得更具挑战性。最近,几种深度学习架构应运而生,尽管与传统方法相比,它们往往无法产生更高的准确性,而且由于依赖于自定义功能,它们大多不遵循端到端架构。然而,其中一些架构具有以端到端方式创建更通用的功能的良好能力,例如流行的 EEGNet 架构。虽然 EEGNet 被用于解码中风患者的运动想象 (MI) 数据,但其性能与传统方法一样好。[1] 在本研究中,我们通过在基于滑动窗口的方法中引入一个称为最长连续重复 (LCR) 的后处理步骤来增强基于 EEGNet 的解码,并将其命名为 EEGNet+LCR。所提出的方法在 10 名偏瘫中风患者的 MI 数据集上进行了测试,结果表明,与唯一的 EEGNet 和更传统的方法(例如通用空间模式 (CSP)+支持向量机 (SVM))相比,该方法在 MI 信号内和跨受试者解码方面都表现出色。我们还观察到 EEGNet+LCR 在受试者内和跨受试者类别中的表现相当令人满意,这在文献中很少见,因此它有望成为实现实用的中风康复 BCI 的有希望的候选方案。
《使命变更》是陆军为服役 17 年或以上的三个部队士兵提供的官方通讯。《使命变更》向士兵介绍退休流程、他们和他们的家人在退休前和退休后将要做出的决定、退休后福利将如何变化,以及为什么陆军希望他们在退休后成为终身现役士兵。根据陆军条例 600-8-7,《使命变更》以季度电子通讯的形式出版。可从 https://soldierforlife.army.mil/Retirement/change-of-mission 免费下载过往版本。有关《使命变更》的问询和意见应发送至陆军退休服务处,收件人:使命变更编辑,251 18th Street South, Suite 210, Arlington, VA 22202-3531 或 USArmy.ChangeofMission@army.mil。其他所有问题请直接咨询陆军退休服务处网站上列出的退休服务官员。在使用或转载《使命变更》任何部分之前,请联系编辑。领导副参谋长,G-1:中将道格拉斯·F·斯蒂特陆军退役服务处处长:马克·E·奥弗伯格《使命变更》编辑:伊丽莎白·卡拉威发行量:178,472 第 VI 卷,第 1 期
人类可能只有短短 50 年的时间来成为太空文明,在此之后,实现这一目标的机会可能会变得太难或不切实际。当前的太空探索和基础设施开发政策隐含地假设了技术、预算和任务执行的渐进方法——人们普遍认为,人类未来将有足够的时间成为太空物种,而我们无法完成的一切将由后代承担。然而,考虑到自然事件、可用能源和人类倾向,现在可能是做出最有效努力实现多行星地位的时机,在势头丧失之前,在我们被石油峰值和不断变化的能源经济分散注意力之前——在没有廉价、可储存、高能量密度石油的情况下,在如此动荡之后重新启动太空计划可能比实际更困难。“太空文明”被定义为一种经济上有利可图的太空经济,需要人类在外星存在才能维持高水平的繁荣。适合在 50 年内实现的太空经济的初始立足点可能包括地球对从卫星或小行星开采的稀土元素或其他难以获得的矿物的依赖,或在另一个星球上永久定居。使用已发布的资料,计算出最低限度自给自足的火星定居点的名义质量和能量需求,并讨论运载火箭的数量。将发射时间表设置为与 NASA 当前预测相匹配,可能需要超过 26 年
摘要。自由空间光通信在部署方便和成本方面是光纤通信系统非常有前途的替代方案。中红外光具有几个与自由空间应用密切相关的特性:即使在恶劣条件下在大气中传播时吸收率也很低、长距离传播期间波前稳定、以及此波长范围不受任何管制和限制。最近已经展示了利用子带间设备进行高速传输的概念验证,但这一努力受到短距离光路(最长 1 米)的限制。在这项工作中,我们研究了使用单极量子光电子学构建长距离链路的可能性。使用了两种不同的探测器:非制冷量子级联探测器和氮冷却量子阱红外光电探测器。我们在背靠背配置中评估了链路的最大数据速率,然后添加了 Herriott 单元以将光路长度增加到 31 米。通过使用脉冲整形、预处理和后处理,我们在 31 米传播链路的两级(OOK)和四级(PAM-4)调制方案中达到了创纪录的 30 Gbit s −1 比特率,并且比特误码率与纠错码兼容。