摘要 目的。在许多现实世界的决策任务中,决策者可获得的信息是不完整的。为了解释这种不确定性,我们为每个决策关联一定程度的置信度,表示该决策正确的可能性。在本研究中,我们分析了 68 名参与者进行八个不同感知决策实验的脑电图 (EEG) 数据。我们的目标是调查 (1) 是否存在与受试者和任务无关的决策信心神经相关性,以及 (2) 在多大程度上可以构建能够在逐次试验基础上估计信心的脑机接口。实验涵盖了广泛的感知任务,从而可以将与任务相关的决策特征与与任务无关的特征分开。方法。我们的系统训练人工神经网络,根据 EEG 数据和响应时间预测每个决策的信心度。我们将解码性能与三种训练方法进行了比较:(1) 单个受试者,训练数据和测试数据均来自同一个人; (2) 多主体,所有数据都属于同一任务,但训练和测试数据来自不同的用户;(3) 多任务,训练和测试数据来自不同的任务和主体。最后,我们使用另外两个实验的数据验证了我们的多任务方法,其中未报告置信度。主要结果。我们发现在刺激锁定和反应锁定时期,不同置信度水平的 EEG 数据存在显著差异。我们所有的方法都能够比相应的参考基线好 15% 到 35% 之间的置信度进行预测。意义。我们的结果表明,即使使用迁移学习方法,也可以从神经信号中重建对感知决策任务的置信度。这些置信度估计基于决策过程,而不仅仅是置信度报告过程。
与复发活性(PIRA)无关的进展,这是一个与复发无关的多发性硬化症(MS)形式化应计的概念,它已成为潜在的临床试验结果。我们讨论其缺点,并评估在临床环境,实验试验和研究中实施它的挑战。PIRA的当前定义假设可以表现为复发的急性炎症,并且可以通过引入特定的时间窗口来散发出渐进的残疾应计的神经退行性,从而可以解散,并导致重复的发作和无视的增加。最近引入了术语Pirma(与复发和MRI活性无关),以表明在没有临床复发,新的大脑和脊髓MRI病变的情况下,残疾应计。在临床实践中评估PIRMA是高度挑战性的,因为它需要经常进行临床评估以及大脑和脊髓MRI扫描。PIRA通常使用扩大的残疾状态量表进行评估,这是针对运动障碍的重量,而对残疾人的更精细评估,包括认知能力下降,使用综合措施或其他工具,例如数字工具,将具有更大的效用。同样,在随机临床试验中使用PIRA作为结果度量也很具有挑战性,需要方法论考虑。这是由于MRI比纯粹的临床描述更好地反映MS致病机制的知识所支持的。The underpinning pathobiology of disability accumulation, that is not associated with relapses, may encompass chronic active lesions (slowly expanding lesions and paramagnetic rim lesions), cortical lesions, brain and spinal cord atrophy, partic- ularly in the gray matter, di ff use and focal microglial activation, persistent leptomeningeal enhancement, and white matter tract damage.我们建议使用PIRA了解未包括常规MRI扫描的观察性MRI扫描中的残疾应计的主要决定因素,并介绍“高级PIRMA”的术语,以调查使用常规和先进的成像。在考虑所有这些通过成像的机制考虑所有这些机制后仍无法解释的任何残留残疾应重点介绍未来的研究优先级,以帮助完成我们对MS发病机理的理解。
脑视觉障碍(CVI)是儿童双边视觉障碍的主要原因,通常以视觉敏锐度(VA)损失(VA)丢失和较高的视觉功能缺陷(HVFD)为特征。但是,VA损失与HVFD之间的关系仍然未知。先前使用较高视觉函数问题清单(HVFQI)的研究表明,正常的VA并未排除HVFD。在这项对CVI儿童的前瞻性对照研究中,我们研究了HVFD和VA损失程度之间的关系,以完善我们对这种关系的理解。我们介绍了两个新指数 - HVFD频谱和严重性 - 以全面了解CVI如何影响单个孩子和整个队列。我们还进行了分析,以确定HVFQI在引发HVFD的有效性,并对HVFD与年龄之间的关系进行初步分析。研究参与者包括59名CVI儿童(年龄:9.87±3.93岁[平均±SD];双眼VA:0.35±0.34 log Mar。)和120个具有正常视力的神经型(NT)儿童(年龄:8.7±2.8岁;双眼VA:0.14±0.16 logmar)。临床病史和注释独立证实了CVI的诊断。父母接受了HVFQI的采访,并使用五级李克特量表记录了他们的回答。Mann - Whitney U-Test(MWU)确定了HVFQI区分CVI和NT参与者的能力;费舍尔的精确测试(FET)和D-可变性的希尔伯特 - 西米特独立标准(DHSIC)评估了HVFDS和VA之间的独立性。使用DHSIC分析支持这些发现(P -Value 0.784)。CVI(频谱:0.65±0.24,严重程度:3.1±0.77)和NT(频谱:0.12±0.17,严重性:1.42±0.49)的平均光谱(范围0-1)和严重程度(范围1-5)指标(0.65±0.24,严重程度:3.1±0.77)。mwu(p -value <0.00001)证实了HVFQI将CVI与NT儿童区分开的能力。FET报告的p值为0.202,这表明数据在HVFDS的严重程度与VA之间没有任何关系。基于这些结果,我们敦促除了VA措施外,还需要对HVFD的所有怀疑CVI的儿童进行评估。HVFQI可能会增加我们对视觉感知,认知和视觉指导作用的神经基础的理解,并带领我们朝着CVI的概念模型迈进,转化为临床实践改进。
摘要 — 脑机接口 (BCI) 用于识别人类的状态和意图,实现人与设备之间的通信。使用脑电图 (EEG) 信号进行人与无人机之间的通信是 BCI 领域最具挑战性的问题之一。特别是,与无人机控制相比,无人机群的控制(方向和编队)具有更多优势。视觉意象 (VI) 范式是受试者在视觉上想象特定的物体或场景。减少受试者 EEG 信号之间的变异性对于基于 BCI 的实际系统至关重要。在本研究中,我们提出了子纪元特征编码器 (SEFE),以通过使用 VI 数据集来提高与受试者无关的任务的性能。本研究是首次尝试展示基于 VI 的 BCI 中受试者之间泛化的可能性。我们使用留一交叉验证来评估性能。包含我们提出的模块比排除我们提出的模块时获得更高的性能。在六种不同的解码模型中,带有 SEFE 的 DeepConvNet 表现出最高的 0.72 性能。因此,我们证明了使用我们提出的模块在与主题无关的任务中解码 VI 数据集并具有稳健性能的可行性。
使用无线信号进行情绪状态识别是一个新兴的研究领域,对人类行为和幸福感监测的神经科学研究产生了影响。目前,对立情绪检测主要依赖于从光学或摄像机获取的面部表情和/或眼球运动的分析。同时,尽管机器学习方法已被广泛用于从多模态数据中识别人类情绪,但它们大多局限于缺乏通用性的受试者相关分析。在本文中,我们报告了一项实验研究,该研究从身体的射频 (RF) 反射中收集 15 名参与者的心跳和呼吸信号,然后采用新颖的噪声过滤技术。我们提出了一种基于原始 RF 数据和处理后的 RF 信号融合的新型深度神经网络 (DNN) 架构,用于对各种情绪状态进行分类和可视化。所提出的模型对独立受试者的分类准确率高达 71.67%,准确率、召回率和 F1 值分别为 0.71、0.72 和 0.71。我们将我们的结果与五种不同的经典 ML 算法的结果进行了比较,结果表明,即使原始 RF 和后处理时间序列数据量有限,深度学习也能提供卓越的性能。通过将我们的结果与 ECG 信号的结果进行比较,深度学习模型也得到了验证。我们的结果表明,使用无线信号进行待机情绪状态检测是一种比其他技术更好的替代方案,具有较高的准确性,在未来的行为科学研究中具有更广泛的应用。
与复发活性(PIRA)无关的进展,这是一个与复发无关的多发性硬化症(MS)形式化应计的概念,它已成为潜在的临床试验结果。我们讨论其缺点,并评估在临床环境,实验试验和研究中实施它的挑战。PIRA的当前定义假设可以表现为复发的急性炎症,并且可以通过引入特定的时间窗口来散发出渐进的残疾应计的神经退行性,从而可以解散,并导致重复的发作和无视的增加。最近引入了术语Pirma(与复发和MRI活性无关),以表明在没有临床复发,新的大脑和脊髓MRI病变的情况下,残疾应计。在临床实践中评估PIRMA是高度挑战性的,因为它需要经常进行临床评估以及大脑和脊髓MRI扫描。PIRA通常使用扩大的残疾状态量表进行评估,这是针对运动障碍的重量,而对残疾人的更精细评估,包括认知能力下降,使用综合措施或其他工具,例如数字工具,将具有更大的效用。同样,在随机临床试验中使用PIRA作为结果度量也很具有挑战性,需要方法论考虑。这是由于MRI比纯粹的临床描述更好地反映MS致病机制的知识所支持的。The underpinning pathobiology of disability accumulation, that is not associated with relapses, may encompass chronic active lesions (slowly expanding lesions and paramagnetic rim lesions), cortical lesions, brain and spinal cord atrophy, partic- ularly in the gray matter, di ff use and focal microglial activation, persistent leptomeningeal enhancement, and white matter tract damage.我们建议使用PIRA了解未包括常规MRI扫描的观察性MRI扫描中的残疾应计的主要决定因素,并介绍“高级PIRMA”的术语,以调查使用常规和先进的成像。在考虑所有这些通过成像的机制考虑所有这些机制后仍无法解释的任何残留残疾应重点介绍未来的研究优先级,以帮助完成我们对MS发病机理的理解。
1 CELLphenomics GmbH,罗伯特-罗斯勒-Str。 10, 13125 柏林, 德国; ulrike.pfohl@cellphenomics.com(上); juergen.loskutov@cellphenomics.com (JL); christoph.reinhard@cellphenomics.com (CR); lena.wedeken@cellphenomics.com (LW) 2 法兰克福歌德大学分子生物科学研究所,Max-von-Laue-Str。 13, 60438 法兰克福, 德国 3 基因组工程与疾病模型,Max Delbrück 分子医学中心,Robert-Rössle-Str. 13, 60438 法兰克福, 德国10, 13125 柏林, 德国; sanum.bashir@biontech.de (SB); ralf.kuehn@mdc-berlin.de (RK) 4 NMI 自然科学与医学科学研究所,图宾根大学,Markwiesenstraße 55, 72770 Reutlingen,德国;patrick.herter@boehringer-ingelheim.com (PH);markus.templin@nmi.de (MT) 5 ASC Oncology GmbH,Robert-Rössle-Str. 10, 13125 Berlin,德国 6 病理学研究所,柏林夏利特大学医学院,Virchowweg 15, Charité pl. 1, 10117 Berlin,德国;soulafa.mamlouk@charite.de 7 生物技术研究所,赫尔辛基大学,Viikinkaari 5, Biocenter 2, 00790 Helsinki,芬兰; sergei.belanov@helsinki.fi 8 罗斯托克大学医学中心普通外科、分子肿瘤学和免疫治疗诊所,Schillingallee 35, 18057 罗斯托克,德国;michael.linnebacher@med.uni-rostock.de 9 罗斯托克大学医学中心普通外科诊所,Schillingallee 35, 18057 罗斯托克,德国;florian.buertin@med.uni-rostock.de 10 巴塞尔大学医院,Petersgraben 4, 4031 巴塞尔,瑞士;marcus.vetter@ksbl.ch 11 巴塞尔兰州立医院,Rheinstr. 26, 4410 Liestal, Switzerland 12 Institute of Pathology, University Hospital Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, German * 通讯地址:christian.regenbrecht@cellphenomics.com
国际计划是一个基于权利的发展和人道主义组织,为所有儿童努力改善生活。我们独立于政府,没有政治或宗教信仰。我们的目的是努力争取一个促进女孩权利和平等的公正世界。我们已经为儿童建立强大的伙伴关系已有80多年了,现在活跃于70多个国家。我们的全球战略特别关注女孩,因为它们通常是最边缘化的,最常见的是留下的。我们致力于雄心勃勃的目标,即在5年内到达1亿女孩,以确保他们可以学习,领导,决定和繁荣。这是我们实现可持续发展目标的贡献,尤其是性别平等的目标。我们的组织正在自我改变,以应对我们工作的任何地方都有巨大的挑战。我们需要大胆,前瞻性和创新的个人来领导我们的国家行动,推动变革并提供结果,使我们能够达到1亿女孩的目标。Plan International's programs in Ethiopia focus on Child Protection, Education, Water, Sanitation and Hygiene (WASH), Food and Economic Security, Humanitarian Response and Resilience Building that we implement in Amhara, Oromia, Tigray, Southern Nations, Nationalities and Peoples' (SNNP), Gambella, Afar and Benishangul-Gumuz Regional States and Addis Ababa City Administration.共有的,性别和残疾问题在所有计划中也被整合和主流。强制性要求:埃塞俄比亚国际计划邀请国际竞标者进行采购咨询服务,以制定国家战略计划,该计划涵盖了2024年7月1日至2029年6月30日。
埃丝特·竹内博士是纽约州立大学杰出教授,在布鲁克海文国家实验室和石溪大学担任联合职务。竹内博士是美国能源部耗资 1000 万美元的能源前沿研究中心中尺度传输特性中心的主任,她正在领导一项研究,研究具有强大能量和使用寿命能力的替代性环保电池系统。自 2012 年来到石溪大学以来,她的工作彻底改变了电池化学和技术,并让她被任命为首任威廉和简·纳普能源与环境主席。竹内博士和她的顶尖研究人员团队以及石溪大学的研究生(拥有化学、材料科学、电气工程和物理学背景)希望通过研究所有能量的两个最基本产物——功和热,找到新的储能替代品。这项跨学科合作研究旨在开发可靠的高功率储能,目标是帮助我们充分利用可再生能源,促进地球更加可持续发展。竹内博士拥有 150 多项美国专利。她因开发出如今植入式心脏除颤器所采用的电池技术而受到认可。奥巴马总统授予她美国技术成就的最高荣誉——国家技术创新奖章。此外,她还是著名的美国国家工程院和美国发明家名人堂的入选者,也是美国医学和生物工程研究所和电化学学会的会员。竹内博士在宾夕法尼亚大学获得化学和历史学士学位,在俄亥俄州立大学获得有机化学博士学位。她在北卡罗来纳大学教堂山分校和布法罗大学完成了博士后工作。在担任学术职务之前,竹内博士在 Greatbatch Inc. 工作了 20 多年。
,一个光子工程小组,桑坦德大学,39005,西班牙B Ciber debioingeniería,生物群岛,Y纳米甲基甲虫,萨鲁德·卡洛斯III,马德里,28029,西班牙西班牙C c Instition de InvestiTo deResjuctivaciónHealthHealth Valinevalinevalain valenticala(Idialla),39011。帕拉联邦大学工程系,邮政信箱8619,阿肯西亚UFPA,贝莱姆,66075-900,巴西和电气与计算机工程学院,坎普纳斯大学坎皮纳斯大学,坎皮纳斯大学,13083-852,巴西坎皮纳斯大学,巴西f电气与信息工程系Sannio,Benevento,82100,意大利H国家研究委员会,微电子和微系统研究所,通过Del Fosso del Cavaliere 100,罗马,00133,意大利,一个光子工程小组,桑坦德大学,39005,西班牙B Ciber debioingeniería,生物群岛,Y纳米甲基甲虫,萨鲁德·卡洛斯III,马德里,28029,西班牙西班牙C c Instition de InvestiTo deResjuctivaciónHealthHealth Valinevalinevalain valenticala(Idialla),39011。帕拉联邦大学工程系,邮政信箱8619,阿肯西亚UFPA,贝莱姆,66075-900,巴西和电气与计算机工程学院,坎普纳斯大学坎皮纳斯大学,坎皮纳斯大学,13083-852,巴西坎皮纳斯大学,巴西f电气与信息工程系Sannio,Benevento,82100,意大利H国家研究委员会,微电子和微系统研究所,通过Del Fosso del Cavaliere 100,罗马,00133,意大利,一个光子工程小组,桑坦德大学,39005,西班牙B Ciber debioingeniería,生物群岛,Y纳米甲基甲虫,萨鲁德·卡洛斯III,马德里,28029,西班牙西班牙C c Instition de InvestiTo deResjuctivaciónHealthHealth Valinevalinevalain valenticala(Idialla),39011。帕拉联邦大学工程系,邮政信箱8619,阿肯西亚UFPA,贝莱姆,66075-900,巴西和电气与计算机工程学院,坎普纳斯大学坎皮纳斯大学,坎皮纳斯大学,13083-852,巴西坎皮纳斯大学,巴西f电气与信息工程系Sannio,Benevento,82100,意大利H国家研究委员会,微电子和微系统研究所,通过Del Fosso del Cavaliere 100,罗马,00133,意大利