摘要背景。手术切除是治疗大型或有症状的脑转移瘤 (BM) 患者的标准方法。尽管辅助立体定向放射治疗后局部控制得到改善,但局部失败 (LF) 的风险仍然存在。因此,我们旨在开发并外部验证一种基于治疗前放射组学的预测工具,以识别高 LF 风险的患者。方法。数据来自 BM 切除腔立体定向放射治疗多中心分析 (AURORA) 回顾性研究(训练队列:来自 2 个中心的 253 名患者;外部测试队列:来自 5 个中心的 99 名患者)。从增强 BM(T1-CE MRI 序列)和周围水肿(T2-FLAIR 序列)中提取放射组学特征。比较了不同的放射组学和临床特征组合。最终模型在整个训练队列上进行训练,使用先前通过内部 5 倍交叉验证确定的最佳参数集,并在外部测试集上进行测试。结果。使用放射学和临床特征组合训练的弹性网络回归模型在外部测试中表现最佳,一致性指数 (CI) 为 0.77,优于任何临床模型(最佳 CI:0.70)。该模型在 Kaplan-Meier 分析中有效地根据 LF 风险对患者进行分层(P < .001),并显示出增量的净临床效益。在 24 个月时,我们发现低风险组和高风险组分别有 9% 和 74% 出现 LF。结论。临床和放射学特征的组合比单独的任何临床特征集更能预测无 LF。LF 高风险患者可能会受益于更严格的随访程序或强化治疗。
方法:收集接受 SRT 治疗 BM 的患者的钆增强 T1 加权 MRI 和特征,用于来自不同机构的训练和测试队列(N = 1,404)和验证队列(N = 237)。从训练集中的每个病变中提取放射组学特征并用于训练极端梯度增强 (XGBoost) 模型。在同一队列上训练 DL 模型以进行单独预测并提取最后一层特征。使用 XGBoost 的不同模型仅使用放射组学特征、DL 特征和患者特征或它们的组合构建。使用外部数据集上的受试者工作特征曲线的曲线下面积 (AUC) 进行评估。研究了对个体病变和每个患者发展为 ARE 的预测。
血源性播散是导致脑转移的最常见转移方式;这意味着即使只看到一个颅内病变,整个大脑都可能受到微转移性疾病的影响。 [2] 最近,人们对这一前提产生了怀疑,导致一种反向哲学的出现,认为在某些患者中,颅骨内的疾病仅限于少数转移瘤,这种状态称为寡转移。 [2] 治疗脑转移常用的两种主要方法是对症干预和治疗干预。对症治疗通常包括使用皮质类固醇来减少肿瘤周围肿胀和使用抗惊厥药来防止癫痫复发。脑转移的治疗方案包括手术干预、全脑放射治疗 (WBRT)、立体定向放射外科 (SRS) 和化疗。多名患者会接受多种治疗方案的组合,治疗决策必须基于多个方面,例如患者的年龄和功能能力、初始肿瘤的类型、脑外疾病的程度、之前的治疗方法以及脑内病变的数量。[6]
约 40% 的肺癌病例在治疗过程中出现脑转移 (BM) (1)。此外,患有 BM 的肺腺鳞癌 (ASC) 患者的中位生存期仅为 4 个月 (2)。随着放射技术的进步,毒性逐渐降低,用于预防和治疗 BM 的放射治疗持续受到关注 (3)。立体定向放射治疗 (SRT) 在过去的半个世纪中取得了进展,其观点逐渐转变,挑战了 BM 的常规全脑放射治疗 (WBRT) 实践 (4)。SRT 包括常规单次分割立体定向放射外科 (SF-SRS) 和低分割立体定向放射治疗 (HSRT) (5)。重复 SRT 可确保较高的局部控制 (LC) 率,尽管存在放射性坏死 (RN) (6) 的风险,这种风险通常是继发于神经认知缺陷和降低
我们使用 3DF Zephyr 构建 3D 模型。对于每个序列,我们导入图像并掩盖巨石周围的区域。我们从图像中生成稀疏点云。在此阶段,我们通过创建地面控制点 (GCP) 将特征上的位置与纬度、经度和海拔值联系起来,从而对该特征进行地理参考。我们使用 30 厘米/像素的国家农业图像计划 (NAIP) 图像和 25 厘米/像素的航空激光雷达数字地形模型 (DTM) 在 ArcGIS Pro 中为每个站点标记了 3 个 GCP 位置 (图 1a) [5]。我们使用 ArcGIS Pro 确定 GCP 的坐标以及从 DTM 中提取这些位置的海拔,我们使用简单的双线性插值来完成此操作,以最好地近似该特定位置的海拔。我们导入了这些点并运行了捆绑调整;如果程序报告的不确定性 <0.01 米,我们认为这些是良好的 GCP。如果任何 GCP 残差较高,我们会调整其位置并重新导入。对 GCP 对齐感到满意后,我们继续创建密集点云、网格和纹理网格(图 1b、c)。对于所有步骤,我们都使用 3DF Zephyr 默认设置。模型完成后,我们生成了一份处理报告,其中提供了平均地面采样距离 (GSD)(我们用其作为分辨率的代理)和模型表面积等信息。我们还将计算出的相机位置导出到 ArcGIS Pro(图 1a),并使用测量工具检查到特征的位置距离以及相机位置之间的距离。我们测量了步骤之间的直线距离,并
面具以两张塑料片开始。制作口罩的治疗射线照相师会在特殊设计的烤箱中逐个温暖它们,直到它们柔软而柔软。第一张纸是在头部背面模制的,第二和第三张纸在您的脸上轻轻模制。塑料会很温暖,但是这个过程并不舒服。一个小的塑料矩形将安装在面罩的前面,以便您轻轻地静置牙齿(如上图所示)。这也有助于保持您的静止。
面具以两张塑料片开始。制作口罩的治疗射线照相师会在特殊设计的烤箱中逐个温暖它们,直到它们柔软而柔软。第一张纸在您的头部背面围绕,第二张纸在您的脸上轻轻模制。塑料会很温暖,但是这个过程并不舒服。一个小的塑料矩形将安装在面罩的前面,以便您轻轻地静置牙齿(如上图所示)。这也有助于保持您的静止。
本研究研究了在分子生成建模中纳入立体化学信息和计算药物发现和材料设计的关键方面的影响。我们使用遗传算法和基于增强学习的技术进行了立体化学感知和常规立体化学 - 基于弦的生成方法的全面比较。为了评估这些模型,我们介绍了专门设计的新型基准,以评估立体化学感知的生成建模的重要性。我们的结果表明,立体化学感知模型通常在各种立体化学敏感任务上与常规算法相同或超越常规算法。但是,我们还观察到,在立体化学作用不太关键的情况下,立体化学感知模型可能会由于必须导航的化学空间的复杂性增加而面临挑战。这项工作为将立体化学信息纳入分子生成模型中所涉及的权衡提供了见解,并为根据特定的应用要求提供了选择适当方法的指导。
在佛罗里达州布埃纳维斯塔湖(Lake Buena Vista)举行的第17届年度国际立体定向身体放射治疗(SBRT)和立体定向放射外科(SRS)将召集世界,脊柱和身体靶向的立体定位辐射模态和技术的世界领导者。教师和参与者将有三天的时间讨论涉及多个器官部位的良性和恶性肿瘤的进展。将为特定器官特定的技术和临床经验提供与教职员工和系统供应商互动的机会。
•对两个图像中的相应像素的搜索如果进行了校准,则两个图像的搜索变得容易一些 - 这意味着,如果两个图像中的同一行中存在一对相应的像素。您从我的讲座24中知道,对于任何给定的像素(i,j)∈I,在另一个图像中必须在另一个图像中对其相应的像素进行搜索。,正如我在第24堂课中所解释的那样,