抽象目的电极弯曲在立体定向干预后观察到,通常在任何一个计算机辅助计划算法中都不考虑任何一个假定直线轨迹或在质量评估中,仅报告与进入和目标点有关的指标。我们的目的是为预测立体电动摄影(SEEG)电极弯曲的预测提供全自动和验证的管道。方法,我们将86个情况的电极转换为一个公共空间,并比较基于特征和基于图像的神经网络,以回归局部位移(LU)或电极弯曲(ˆ EB)的能力。根据入口和目标点处的大脑结构,将电极分层分为六组。模型,无论有没有蒙特卡洛(MC)辍学,都经过训练并使用十倍的交叉验证进行了验证。结果基于法师的模型OutperformedFeatures基于ModelsForallGroups,Modelsthatpriped Lu执行的better,而不是EB。基于图像的模型预测与MC脱落的模型预测导致较低的平方误差(MSE),而没有辍学的改进高达12.9%(LU)和39.9%(ˆ EB)。与在预测LU时使用T1加权MRI相比,使用脑组织类型(皮层,白色和深灰质)的图像(皮质,白色和深灰质)产生了相似的性能。在推断基于图像的模型(脑组织类型)的轨迹时,有86.9%的轨迹具有MSE≤1mm。结论一种基于图像的方法与其他方法,输入和输出相比,用脑组织类型的图像回归局部位移,从而产生了更准确的电极弯曲预测。未来的工作将调查电极弯曲到计划和质量评估算法的集成。
I. 引言利用颅内阵列(如皮层电图 (ECoG) [1])对大脑活动进行侵入式记录,已在脑机接口 (BCI) 设计中显示出良好的前景,可用于语音解码和合成等多种应用 [2],[3],[4],[5],[6],[7]。由于 ECoG 仅从皮层表面采集灰质样本,因此很少有人研究白质记录对 BCI 解码的潜在贡献,而白质约占人类大脑体积的 50%。此外,据报道,白质记录的信息与灰质的信息不同 [8]。立体定向脑电图 (sEEG) [9] 在临床应用中的日益普及,为检查更广泛大脑区域和更深层结构(包括灰质和白质)的神经活动提供了机会。最近一些研究探讨了白质 sEEG 记录在 BCI 设计中的作用。研究表明,加入来自灰质和白质的 sEEG 通道有助于区分各种上肢运动和静止,或区分不同的运动类型 [10]。其他研究表明,灰质和白质中的 sEEG 通道有助于 BCI 的语音活动检测和语音生成模型 [7]、[11]、[12]。虽然这些研究强调了灰质和白质对语音生成的潜在贡献,但尚未对灰质和白质通道进行全面的表征。本研究分别和联合研究了来自灰质和白质的通道,以设计一个语音活动检测模型,用于区分 BCI 的语音和非语音。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
目的尽管对其作用机制尚不了解,但深部脑刺激 (DBS) 是治疗不同神经系统疾病的有效方法。非人灵长类动物 (NHP) 的使用在推动该领域的发展方面一直具有重要意义,并且为揭示 DBS 的治疗机制提供了独特的机会,为优化当前应用和开发新应用开辟了道路。为了提供参考,使用 NHP 的研究应使用合适的电极植入工具。在本研究中,作者报告了使用市售无框立体定向系统 (微靶向平台) 瞄准 NHP 中不同深部脑区域的可行性和准确性。方法在七个 NHP 的丘脑底核或小脑齿状核中植入 DBS 电极。为每只动物设计一个微靶向平台并用于引导电极的植入。每只动物在术前都获取了影像学研究数据,随后由两名独立评估人员进行分析,以估计电极放置误差 (EPE)。同时还评估了观察者之间的差异。结果分别估计了 EPE 的径向和矢量分量。EPE 矢量的大小为 1.29 ± 0.41 毫米,平均径向 EPE 为 0.96 ± 0.63 毫米。观察者之间的差异可以忽略不计。结论与传统的刚性框架相比,这些结果表明,与传统的刚性框架相比,该商用系统适用于增强 DBS 导线在灵长类动物脑内的手术插入。此外,我们的研究结果开辟了在灵长类动物中进行无框架立体定位的可能性,而无需依赖基于术中成像的昂贵方法。
含量的含量应最佳进行辅助诊断研究(p63,calponin,ck903,e-钙粘着蛋白,CK5/6,CK5/6,CK 7,MNF 116,S100,S100,网状染色等)或预后预测标记(ER,PR,AR,KI67,HER2,各种商业预测 - 预后测试电池),以及针对个性化医学的全面基因组分析,根据肿瘤的遗传概况来定制治疗方案。每个免疫接种剂将需要从石蜡块中至少一个4微米厚的组织段才能制备载玻片。理论上可以准备高达1050张载玻片,以从具有8量规设备获得的适当样品中进行其他研究,该样品提供了4.19 mm-厚(即4190微米)核心活检组织碎片。对于侵入性癌症,载玻片上需要超过1mm(> 1mm)线性癌的诊断症,而微渗透性癌需要超过0 mm,但小于或等于1mm(> 0mm-≥1mm)的侵入性侵入性癌进行诊断。一个核心活检片段带有A(4 mm x 4 mm x 4 mm)肿瘤质量
Volume conduction models of the head are widely used for source reconstruction of electro- (EEG) and magnetoencephalography (MEG) activity ( Malmivuo and Plonsey, 1995 ; Nunez and Srinivasan, 2006 ; Hansen et al., 2010 ), and are used to understand and optimize the effects of electrical ( Neuling et al., 2012 ; Rampersad et al., 2014 )和磁性脑刺激(Janssen等,2013),用经颅电气,深脑和磁刺激(TES,DBS和TMS)颅内和颅外应用。尽管有许多模型研究可以通过比较不同的模拟模型来量化电势数值的准确性(在EEG情况下)和磁场(在MEG情况下)(在MEG情况下),但研究了较少的研究研究,研究了人类和模拟的Elliss and ush and droissells and and and and and and and and and and eSte and and and and and and and and and and and and and and and and and and and。 Al。,2017)。体积传导模型的几何,电和数值方面是固有的。例如,BEM假设几何形状由具有同质和各向同性的电导率的嵌套隔室组成,从而导致对三角形的表面网格之间的边界进行几何描述,其中大多数BEM的实现都需要触摸或相交的情况,并且在deSect and triangles不得不触摸或相互交织。另一个例子是白质传导率的假设是各向异性,它将数值方法的选择限制为FEM或FDM。涉及计算机模拟的验证研究中经常采用的策略是将重点放在其中一个或两个因素上,并保持其余方面固定。先前的工作表明,由体积传导模型产生的潜在的准确性取决于许多因素,例如模型的几何代表(Vorwerk等,2014),不同组织的电导率(Oostendorp等,2000,2000; Aydin等,2014; Aydin et al。,2014年),Sensers nermane alser(Cuplmane alser),Etermane et ner ner ner ner ner ner ner ner ner ner ner。 2020a),来源的表示[例如,偶极子(De Munck等,1988)或双梁(Vermaas等,2020b)],以及用于解决数学问题的方法[例如,具有分析公式(De Munck and Peters,De Munck and Peters,1993; Zhang,1995; Zhang; Mosher et efiment; Mosher等人,2001年; Oostenveld和Oostendorp,2002年; Akalin-Acar和Gençer,2004元素方法(Marin等,1998; Schimpf等,2002; Miinalainen等,2019)]。通过在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,颅骨,血管或dura的骨骼部分需要高分辨率,需要在模型中进行高分辨率,以便在模型中具有足够的地理位置,以使其具有足够的详细信息, 是在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,以使其具有足够的地理位置的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息, 进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk是在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,以使其具有足够的地理位置的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息, 进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk是在模型中包括高分辨率的解剖学细节,例如CSF,紧凑型和海绵状的骨骼部分,以使其具有足够的地理位置的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息,以使其具有足够的详细信息, 进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk进行了特定的联系。 ; Piastra等人,2018年)。 在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk进行了特定的联系。 ; Piastra等人,2018年)。在Nüßing等人中。 (2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。 Piastra等人。 vorwerk在Nüßing等人中。(2016),例如,头部模型的几何形状保持恒定,并且解决了正向问题的数学方法。Piastra等人。vorwerk(2018),更改了数值方法和源模型,而几何形状保持恒定。
引言湿地鸟类在湿地生态系统中起着重要作用。湿地鸟是野生动植物的重要组成部分,它们的发生和分布是了解湿地栖息地的整体情况的重要现象。鸟类是环境变化的最佳指标之一。任何形式的生态系统中鸟类的种群显示了该地区的环境质量,污染水平,安全性以及食物和栖息地的可用性。根据Rathore和Sharma(2000)的说法,湖中或附近的鸟类受到多种因素的影响,例如污染,人类活动的干扰以及缺乏水体维护。 大多数鸟类都有从季节到季节的特定栖息地要求,这可能导致它们的灭绝(Chauhan等,2008)。 在印度发现的1340种鸟类(Ali and Ripley,1987; Manakandan and Pittie,2001),已知大约310种依赖于湿地(Kumar等,2005)。 fulåll,水鸟的栖息地要求是湿地最重要的功能之一。 与栖息地丧失相关的人为栖息地的丧失,而不是与人类活动的任何其他方面,例如使用农业农药,小袋和狩猎或人口密度。 在世界各地,人们对水鸟类及其湿地栖息地的保护越来越兴趣。 由于某些环境变化和人类活动,这些栖息地处于压力下(Turner等人。 2000; Froneman等。 2001)。 印度估计有约5820万公顷的湿地(Prasad等人根据Rathore和Sharma(2000)的说法,湖中或附近的鸟类受到多种因素的影响,例如污染,人类活动的干扰以及缺乏水体维护。大多数鸟类都有从季节到季节的特定栖息地要求,这可能导致它们的灭绝(Chauhan等,2008)。在印度发现的1340种鸟类(Ali and Ripley,1987; Manakandan and Pittie,2001),已知大约310种依赖于湿地(Kumar等,2005)。fulåll,水鸟的栖息地要求是湿地最重要的功能之一。与栖息地丧失相关的人为栖息地的丧失,而不是与人类活动的任何其他方面,例如使用农业农药,小袋和狩猎或人口密度。在世界各地,人们对水鸟类及其湿地栖息地的保护越来越兴趣。由于某些环境变化和人类活动,这些栖息地处于压力下(Turner等人。2000; Froneman等。2001)。印度估计有约5820万公顷的湿地(Prasad等人2002)。 这些湿地中的许多分布在印度倾向平原周围。 由不同类型的经济发展和相关活动引起的许多直接和间接压力对这些湿地产生不利影响2002)。这些湿地中的许多分布在印度倾向平原周围。由不同类型的经济发展和相关活动引起的许多直接和间接压力对这些湿地产生不利影响
摘要:脑转移 (BM) 是癌症的常见并发症,在现代需要多模式管理方法和多学科护理。传统上,由于细胞毒性化疗的疗效有限,治疗策略仅侧重于局部治疗,例如全脑放射治疗 (WBRT)、立体定向放射外科 (SRS) 和切除术。然而,随着分子疗法的普及,中枢神经系统 (CNS) 渗透性越来越强,现在可以个性化选择量身定制的全身疗法与局部治疗一起使用。此外,具有已证实的 CNS 活性的免疫检查点抑制剂 (ICI) 的引入进一步彻底改变了 BM 患者的管理。然而,这些癌症疗法迅速引入临床实践,导致关于这些全身疗法与 SRS 的最佳时机、顺序和组合的已发表文献严重匮乏。本文回顾了肿瘤生物学和分子特征对 BM 患者治疗模式的影响,并批判性地分析了 SRS 的当前前景,特别关注与全身治疗的结合。我们还讨论了结合 SRS 和 ICI 的新兴治疗策略、这些疗法在 SRS 周围的时间和顺序的影响、皮质类固醇的作用,并回顾了治疗后的影像学发现,包括假性进展和放射性坏死。
附属机构:1 宾夕法尼亚大学生物工程系,宾夕法尼亚州费城,19104 2 宾夕法尼亚大学神经工程与治疗学中心,宾夕法尼亚州费城,19104 3 宾夕法尼亚大学医院放射科,宾夕法尼亚州费城,19104 4 宾夕法尼亚大学生物统计学、流行病学与信息学系,宾夕法尼亚州费城,19104 5 宾夕法尼亚大学成像与可视化中心统计,宾夕法尼亚州费城,19104 6 宾夕法尼亚大学临床流行病学与生物统计学中心,宾夕法尼亚州费城,19104 7 宾夕法尼亚大学医院神经外科系,宾夕法尼亚州费城,19104 8 宾夕法尼亚大学医院宾夕法尼亚癫痫中心神经内科,宾夕法尼亚州费城,19104 美国 9 宾夕法尼亚大学电气与系统工程系,宾夕法尼亚州费城,19104 10 宾夕法尼亚大学物理与天文学系,宾夕法尼亚州费城,19104 11 宾夕法尼亚大学精神病学系,宾夕法尼亚州费城,19104 12 圣达菲研究所,新墨西哥州圣达菲,87501
立体定向脑电图 (sEEG) 利用局部穿透深度电极来测量脑电生理活动。它最常用于识别难治性癫痫的致痫区。植入的电极通常提供一组独特脑区域的稀疏采样,包括海马体、杏仁核和岛叶等较深的脑结构,而这些结构无法通过皮层脑电图 (ECoG) 等浅层测量方式捕捉到。尽管临床应用重叠,且脑机接口 (BCI) 的 ECoG 解码方面也取得了最新进展,但迄今为止,sEEG 在 BCI 解码方面受到的关注相对较少。此外,相关深部脑刺激 (DBS) 植入物的成功预示着长期 sEEG 应用的潜力。本文概述了 sEEG 技术、BCI 相关研究以及 sEEG 在长期 BCI 应用中的未来发展方向。