利用工程酶进行催化为活性药物的生产提供了更有效的途径。然而,生物催化在早期药物发现活动中的潜力仍未得到充分开发。在这项研究中,我们开发了一种生物催化策略,通过苯并噻吩和相关杂环的分子内环丙烷化来构建富含 sp 3 的多环化合物。我们进化出了两种具有互补区域异构体选择性的卡宾转移酶,以催化在杂环的 C2 或 C3 位上带有重氮酯基的苯并噻吩底物的立体选择性环化。我们通过结合晶体学和计算分析阐明了这些反应的详细机制。利用这些见解,可以将其中一种生物催化剂的底物范围扩大到包括以前不反应的底物,这凸显了整合进化和理性策略来开发用于新自然转化的酶的价值。这里获得的分子支架具有三维和立体化学复杂性以及“三元律”特性的组合,这使得它们对于基于片段的药物发现活动具有很高的价值。
我们开发了一种用于自动处理和分配原始 13C 和 1H NMR 数据的强大系统 DP4-AI,并将其集成到我们的计算有机分子结构解析工作流程中。从具有未定义立体化学或其他结构不确定性的分子结构开始,该系统可实现完全自动化的结构解析。开发了使用客观模型选择进行 NMR 峰值拾取的方法以及用于将计算出的 13C 和 1H NMR 位移与嘈杂实验 NMR 数据中的峰值进行匹配的算法。当使用一组具有挑战性的分子测试进行严格评估时,DP4-AI 的处理速度提高了 60 倍,并且几乎不需要科学家的时间。DP4-AI 代表了 NMR 结构解析的一次飞跃,也是 DP4 功能的一次重大变化。它可以对数据库和大量分子进行高通量分析,这在以前是不可能的,并为通过机器学习发现新的结构信息铺平了道路。此新功能与直观的 GUI 相结合,可作为开源软件在 https://github.com/KristapsE/DP4-AI 上使用。
课程描述。有机化学原理及其在反应机理中的应用。详细介绍有机化学的理论和原理;有机化学中的键合和结构、立体化学、有机化学中的反应中间体和过渡态理论;动力学和热力学方法。还将强调通过计算化学探索这些概念。先决条件:CHM 2210、2211(或一年的本科有机化学)和 CHM 5224。教学大纲。以下教学大纲可能会更改。更新版本和阅读作业将在 Canvas 上提供(见下文)。这些章节参考了课程的主要教科书《高级有机化学:A 部分:结构和机制》,第五版》。将提供《有机化合物立体化学》(SOC)和《有机化学机理和理论》,第三版(MTOC)中的其他课程阅读材料。课程 #1 1 月 12 日课程介绍/概述。 1.1 分子结构和价键概念 第 2 节 1 月 14 日 1.2 分子轨道理论与方法 第 3 节 1 月 19 日 T1.1、T1.2、T1.3、键合主题 第 4 节 1 月 21 日 2.1 构型 第 5 节 1 月 26 日 SOC 4.1–4.6 对称性、点群 第 6 节 1 月 28 日 2.2-2.3 构象、分子力学 PS#1 DUE 第 7 节 2 月 2 日 2.4–2.6、T2.1、T2.2、T2.3 反应立体化学、立体电子效应 第 8 节 2 月 4 日 3.1、MTOC 2.3 热力学稳定性、Benson 基团加成性 PS #2 DUE 第 9 节 2 月 9 日 期中考试 I(第 1-3.1 章) 第 10 节 2 月 11 日 3.2 化学动力学 第 11 节 2 月16 3.3 热力学稳定性和反应速率 课堂 #12 二月 18 3.4–3.5 电子取代基效应、同位素效应 课堂 #13 二月 23 3.6 线性自由能关系 课堂 #14 二月 25 3.7–3.8 催化、溶剂效应 课堂 #15 三月 2 4.1 亲核取代机制 PS #3 DUE 课堂 #16 三月 4 4.2–4.3 结构和溶剂化效应、邻基效应 课堂 #17 三月 9 4.4、T4.1 碳正离子、石油加工中的碳正离子 PS #4 DUE 课堂 #18 三月 11 期中考试 II(第 3.2-4 章) 课堂 #19 三月 16 5.1–5.9 加成反应 课堂 #20 三月 18 5.10 消除反应 课堂 #21 三月23 6.1–6.5、T3.1 MTOC 3.3–3.4 碳氢化合物酸性、碳负离子和碳亲核试剂 第 22 课 3 月 25 日 7.1–7.7 羰基化合物 PS #5 DUE 第 23 课 3 月 30 日 8.1–8.6 芳香性 第 24 课 4 月 1 日 9.1–9.5 芳香取代 PS #6 DUE 第 25 课 4 月 6 日 期中考试 III(第 5-9 章) 第 26 课 4 月 8 日 10.1–10.6 协同周环反应 第 27 课 4 月 13 日 11.1-11.6 自由基的生成和表征、机理和反应 第 28 课 4 月 15 日 12.1–12.4 光化学、光化学反应 PS #7 DUE 第 29 课 4 月 20 日 期末考试 复习或补课 期末考试 4 月 27 日 期末考试(累计)星期二,4 月 27 日,上午 7:30 – 10:30 所需教材:Carey, FA; Sundberg, RJ 高级有机化学:第 A 部分:结构和机制,第五版;Springer:纽约,2007 年(ISBN 978-0-387-68346-1,平装本,Amazon.com,50.27 美元)。所需软件:Spartan,学生版(适用于 Macintosh 或 Windows)。波函数。wavefun.com(50 美元)https://www.wavefun.com/spartan-student-pricing 还有许多其他合适的免费软件应用程序可以替代它——尤其是针对 PC 平台。例如,NWChem https://nwchemgit.github.io/、ORCA https://cec.mpg.de/orcadownload/、HyperChem https://it.chem.ufl.edu/services/available-software/ 请参阅:https://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_software
生物催化剂因其精致的立体化学而受到倡导,但是测量对映体多余的色谱分离速度缓慢,可以瓶颈它们的发展。为了克服这一限制,我们生成对映选择性转录因子(ETF),将对映异构体特异性分析物浓度转换为可编程基因表达输出。使用大量平行的报告基因测定法,我们测量了300,000多个转录因子变体的剂量反应曲线,以响应对映体中间体和药物溶性溶性的术前体。利用这个全面的数据集,我们定量比较由随机,位点饱和和shu thu诱变产生的变体的灵敏度,选择性和动态范围,从而使ETF分离具有特殊的特异性特异性。高分辨率结构进一步阐明了四个动物如何实现对映选择性和电荷相互作用,使亚胺反应产物与亚胺前体不同。最后,我们使用两个ETF来创建高通量手性屏幕,我们将其与荧光激活的细胞排序配对,以倒置的对映选择性发展亚胺还原酶。此方法为不对称反应筛选提供了一种快速且可扩展的方法,从而促进了药物制造的生物催化剂设计的进步。
单元1:数学和统计基础演算:函数限制,连续性,可不同,连续分化的概念,Liebnitz Theorem,渐近线,确定的积分,降低公式,普通微分方程的顺序和程度,线性微分方程,线性微分方程具有恒定系数和laplace的恒定差异。代数:映射,组,亚组,矩阵,矩阵的基本操作,矩阵倒数,矩阵在线性方程系统中的应用,向量空间,线性变换及其矩阵表示。分析开放集,闭合集,限制,连续性,泰勒定理,拉格朗日的平均定理,罗尔定理,序列和系列,串联的收敛。概率分布:二项式,泊松和正常分布的基础知识及其在生物学中的应用。随机变量;离散且连续的概率分布,概率质量函数,概率密度函数,数学期望。几何平面,直线,球体,锥体,圆柱体,圆锥体。单元2:化学在生物信息学动力学中的作用,原子结构,周期性特性,化学键合,有机化合物中电子的分布。自然平衡,化学动力学,P和D块元素,立体化学,构型异构主义,对称性元素,手性。界面特性,热力学,第一过渡系列元素的化学性质,配位综合,有机金属化合物,Alicyclic化合物酯酯包括活性甲基元素,芳族化合物,核化合物,核化合物,零组元素,相位元素,相位规则和电化学。
a) 基础知识:物理基础、磁核、共振、弛豫过程、信号灵敏度。b) 仪器:连续波 (CW) 仪器、脉冲傅里叶变换 (FT) 仪器、功能、与灵敏度的关系、采样。c) 1 H NMR,结构与光谱的相关性:化学环境和屏蔽、化学位移及其概念的起源、参考化合物、局部抗磁屏蔽和磁各向异性、与化学位移的关系、化学和磁非等效性、自旋-自旋分裂及其起源、帕斯卡三角、耦合常数、耦合机制、积分、NMR 溶剂及其残余峰、杂原子上的质子、四极杆增宽和去耦、构象和立体化学对光谱的影响、卡普拉斯关系、非对映质子、与 F 和 P 的异核耦合、虚拟耦合、长距离耦合-epi、peri、bay 效应。位移试剂-作用机理、自旋解耦和双共振。一些化合物和药物的光谱说明。d) 13 C NMR 结构与光谱的相关性:化学环境、屏蔽和碳-13 化学位移、计算、质子耦合 C 光谱、质子解耦 C 光谱、核 Overhauser 增强 (NOE)、积分问题、极化转移无失真增强 (DEFT)、碳与氘、碳与 F、碳与 P 的异核耦合。一些化合物和药物的光谱说明。4. 质谱 (MS):分子离子和亚稳态峰、碎片
高级难度理论的领域1。立体化学纽曼预测;控制新的立体中心(Felkin-Anh,Zimmerman-Traxler)的模型;方形平面和八面体过渡金属复合物的几何异构体;识别具有多个立体中心的分子中的异构体可能性。2。酶根据反应类型分类;同位素标记研究;涉及辅酶A的代谢途径A。3。相位和化学平衡潜热和Clausius-Clapeyron方程;综合性能;平衡常数的温度依赖性。4。分析技术质谱法(分子离子,碎片,同位素分布); IR数据的解释。5。光化学光催化;乐队间隙;量子产量;半导体。6。mo理论mo图的硅藻图;金属 - 配体相互作用。The following topics will not appear at IChO 2025: Formal group theory Planar, axial, or helical chirality Enzymatic kinetics Quantitative understanding of any isotope effects Kinetics of complex reactions Steady state and quasi equilibrium approximations NMR spectroscopy Synthetic polymers Photocatalytic organic mechanisms Pericyclic organic mechanisms Crystal field theory Thermodynamics and kinetics of吸附固态晶体结构不预期:记住心脏实用的代谢途径1。真空过滤2。薄层色谱图3。微观底片和96井板的使用显微镜反应不会出现在ICHO 2025上:不预期使用不混可能的溶剂来提取学生的提取:使用:使用分光光度计本身
胺是有机合成和药物化学中的关键功能团。游离胺和氮杂环在许多具有生物活性的小分子中普遍存在。1 此外,由于其亲核特性,游离胺通常用作有机合成中的化学投入物,包括许多成熟的反应,例如 SN 2 加成、还原胺化、酰胺偶联和 Buchwald-Hartwig 胺化。2–4 二胺是一个特别受重视的子类,因为它们在药物、配体和有机催化剂方面具有独特的应用。5 因此,从简单的起始材料制备结构复杂且取代不同的二胺的新策略在学术界和工业界都很有价值。在此背景下,我们寻求开发一种方法,将各种简单的烯基胺(一级或二级)(一类易于获取的起始材料)直接转化为不同功能化的二胺,其中预先存在的胺通过催化胺化 1,2-双功能化指导第二个胺的安装。近年来,定向三组分烯烃双功能化已成为一种有效的策略,可从简单的化学输入中选择性合成高度取代、多功能和立体化学定义的产品(方案 1A)。在这种情况下,成功的基于胺的导向基团包括基于双齿导向助剂的基团。6-8 和单齿保护基(例如酰胺和磺酰胺)(方案 1B)。 9 在这些情况下,将吸电子基团连接到胺上至关重要,因为它会减弱布朗斯台德和路易斯碱度,从而降低其干扰催化的能力。虽然这种方法本身很有价值,但当需要相应的游离胺产物时,需要两个额外的步骤进行保护和脱保护。此外,除了极少数例外,9h 这些导向基团不能直接进行 N 官能化,需要进一步操作才能安装所需的 N -烷基或 N -芳基取代基。因此,
[*注:3901/3902/3903 中的任意一门核心课程] CHE-NEIST-2-3901*(核心课程)(任意一门)高级物理化学:2-0-0-2 热力学和化学动力学、量子力学、原子结构和光谱、双原子中的化学键、群论的化学应用、胶体和表面科学、表面活性剂、界面和界面特性、电化学。 CHE-NEIST-2-3902* (核心) (任意一门) 高级无机化学:2-0-0-2 无机化合物的结构与键合、配位化合物化学、化学与群论中的对称性、主群化学、有机金属化学、过渡金属化合物的电子光谱、磁化学、金属簇化合物、无机反应机理、金属配合物中的电子转移反应、生物无机化学(金属酶、作为氧载体的金属配合物、光合作用)、药物化学中的金属配合物、无机配合物催化作用。 CHE-NEIST-2-3903* (核心) (任意一门) 高级有机化学:2-0-0-2 立体化学、反应机理、CC 和 CX 键形成、逆合成分析、光化学、周环反应、反应中间体、不对称合成方法及其在全合成中的应用、氧化还原反应、有机催化、复分解反应。CHE-NEIST-2-3904 (选修) 高级分析化学:2-0-0-2 分析仪器、信号和噪声、光学分析方法概述:光学仪器组件、基于吸收、发射和散射的原子和分子光谱、电分析技术(基础电化学、伏安法、电位法)、分析分离和色谱法简介、GC、LC、质谱、电迁移技术、联用技术、检测器、石油精炼分析工具。 CHE-NEIST-2-3905(选修)高级有机金属化学:2-0-0-2 基础知识、18 价电子规则;使用分子轨道理论进行有机金属配合物的结构和键合。σ-供体配体:
碳水化合物的定性分析。碳水化合物的定性和定量测试。碳水化合物的定性和定量分析。碳水化合物定量分析。碳水化合物PDF的定性分析。碳水化合物是在动物和植物中都可以发现的复杂分子。它们的特征是其化学配方cn(H2O)N,其中n代表碳原子和水分子的数量。这些化合物通过氧化提供了能量,并用作储存的化学能源。除了作为主要能源外,碳水化合物还在细胞成分的合成中起着至关重要的作用。碳水化合物分为三个主要类别:单糖,二糖和多糖。单糖由包含3至7个碳的单个碳水化合物分子组成,而二糖是通过将两个单糖连接在一起而形成的。多糖由许多单糖单元组成。当我们食用碳水化合物时,它们在我们的体内分解,最终形成水和二氧化碳,释放出用于各种身体功能的能量。多余的碳水化合物可以在肝脏中存储为糖原或转化为脂肪。植物通过光合作用产生碳水化合物,该过程利用来自太阳的能量来从水和二氧化碳中构建这些化合物。单糖结构可以使用Fischer投影来表示,这显示了分子中每种手性碳的立体化学。这有助于轻松比较单糖结构。例如,葡萄糖和半乳糖是两个糖,它们的名称不同,因为它们在碳4。在溶液中,大多数单糖作为环状半含量存在,其中醛或酮基在同一分子的另一端与一个羟基反应。有两种主要形式的D-葡萄糖:α-D-葡萄糖和β-D-葡萄糖。这些结构在解决方案中不断互相互连。化学测试可以确定糖是否还原。还原糖含有一个游离的异源碳,该碳可以与Fehling的试剂(如Cu2+还原引起的红色变红)反应。Barfoed的测试相似,但与各种糖的反应不同。Seliwanoff的测试涉及脱水,并形成带有酮的樱桃红色复合物,而Aldose的反应较慢。化学测试还可以识别特定类型的碳水化合物。例如,碘形成带有淀粉的蓝色复合物,表明淀粉糖或其他螺旋盘绕的多糖。产生的颜色取决于多糖的结构和碘溶液的强度/年龄。与酵母配对时,许多碳水化合物可以进行发酵,从而产生乙醇和二氧化碳作为副产品。C6H12O6→2 CH3CH2OH + 2 CO2(G)发酵用于酿造啤酒和葡萄酒,在这里生产的酒精可作为所需的结果。但是,并非所有糖都可以用酵母作为食物来源。注意:有些测试需要热水浴。确定在存在酵母菌的情况下发酵哪些糖,哪些糖不得进行,您将进行一系列测试。发酵的证据将表现为二氧化碳气体的进化。在每个测试中,一个含有酵母和要测试的糖的溶液将被困在倒置的小试管中。几天后,检查测试管中的气泡形成。如果存在,则表明发酵发生。二糖和多糖暴露于酸或特定酶时可以水解。当水解二糖时,其产物是单个单糖。多糖在水解后产生葡萄糖,麦芽糖和葡萄糖的混合物。如果完全水解,则产品将是葡萄糖。在本实验中,您将水解蔗糖,然后测试是否存在还原糖。您还将水解淀粉并同时测试减少糖和淀粉。实验过程中始终戴安全护目镜。在实验的结论中,将所有废物处理在指定的无机废物容器中。在热板上加热几个烧杯,在需要时准备好它们。1。发酵:本部分描述了如何制备测试。大型测试管已被标记并填充了要测试的每个溶液。将一个小试管倒置在每个大型试管中,使其完全填充溶液。记录演示开始的日期和时间。接下来是Barfoed的测试!大型试管的每个顶部都被覆盖并倒置,以便内部的小试管完全充满溶液。加入并溶解到每个试管,0.5 g的碳水化合物样品,50 mL实验室水和0.02-0.03 g的酵母菌。检查小型测试管中的任何气泡。如果存在,则表明在反应过程中产生了气体,在管中发生了表示发酵。您的任务是进行一些观察!在实验的这一部分中,您将测试已知的葡萄糖,果糖,乳糖,蔗糖,淀粉的样品,并将其与未知成分样品进行比较。您将使用三种不同的测试:Fehling的测试,Barfoed的测试和Seliwanoff的测试。在Fehling的测试中,您将与6 ml溶液B混合6 mL溶液A,以创建Fehling的溶液。然后,在包含未知样品的每个试管中加入2 ml的该组合溶液,以及一些已知样品进行比较。将管子在沸水浴中加热5分钟,并观察发生的事情。如果您看到红色沉淀形式,则表示正反应。您将在每个试管中将每种溶液与3 mL barfoed的试剂混合1毫升。然后,将管子在沸腾的水浴中加热5分钟,观察发生的事情。如果看到红色沉淀形式,它也表示正反应。请注意沉淀出现需要多长时间。最后,您将使用Seliwanoff的测试!然后,加入4毫升Seliwanoff试剂并充分混合。记录您的观察结果!5。6。将每种溶液添加10滴以在包含未知样品的每个试管中测试,以及一些已知样品进行比较。在沸腾的水浴中加热管子,直到看到颜色变化(这可能需要大约10分钟)。记住要仔细观察并记录您做出的任何结果或观察结果!碘测试:我们将测试葡萄糖,果糖,乳糖,蔗糖,淀粉,水,并将其与未知成分样品进行比较。首先,将每种溶液的1 ml添加到7个标记的测试管之一中。然后,将3滴碘溶液添加到每个管中并混合。比较颜色并记录您的观察结果。水解:该部分分为三个部分(6A-C)。在6A中,我们将在试管中将0.5 mL 3 M HCl与5 ml的1%蔗糖溶液混合。在沸腾的水浴中加热20分钟,然后冷却并用1 M NaOH中和混合物,直到在pH纸上测试中性。将该溶液的8-10滴转移到小试管中。接下来,将1毫升Fehling溶液A与1 mL Fehling溶液B混合,然后将其添加到包含水解的蔗糖的小试管中。在沸水浴中加热几分钟。记录您的观察结果。6b:在这一部分中,我们将在试管中将3 ml的1%淀粉与0.5 mL HCl混合。在沸水浴中加热10分钟,然后冷却并用1 M NaOH中和混合物,直到在pH纸上测试中性。将该溶液的8-10滴转移到小试管中。在沸水浴中加热几分钟。2。接下来,将1毫升Fehling溶液A与1 mL Fehling的溶液B混合,然后将其添加到包含水解淀粉的小试管中。记录您的观察结果。6C:使用步骤6B的剩余溶液,将1 mL传递到小试管中,并加入3滴碘溶液。记录您的观察结果,并将它们与尚未水解的淀粉的结果进行比较。发布实验室问题:1。基于实验每个部分的结果,确定您的未知组件并解释原因。将蔗糖的Fehling测试结果与水解蔗糖的测试结果进行了比较。您的结果告诉您什么?3。重写文本:讨论了Fehling对淀粉和水解淀粉的测试的结果。此外,在淀粉和水解淀粉上进行的碘测试进行了比较。阐明了“还原糖”的概念。此外,检查了Seliwanoff测试和碘测试中的水的目的。绘制了α-D-Fructose和β-D-Fructose的结构图。 分析了一种与Fehling试剂,Seliwanoff的试剂和Barfoed的试剂反应的未知碳水化合物。 关于碳水化合物的结论是根据其反应得出的。 对蔗糖和乳糖,葡萄糖和淀粉的区分以及葡萄糖和果糖进行了区分的测试以及每种测试的解释。 最后,检查所有二糖都不会使用酵母进行发酵的原因。绘制了α-D-Fructose和β-D-Fructose的结构图。分析了一种与Fehling试剂,Seliwanoff的试剂和Barfoed的试剂反应的未知碳水化合物。关于碳水化合物的结论是根据其反应得出的。对蔗糖和乳糖,葡萄糖和淀粉的区分以及葡萄糖和果糖进行了区分的测试以及每种测试的解释。最后,检查所有二糖都不会使用酵母进行发酵的原因。(注意:重写文本在应用“添加拼写错误(SE)”方法时保持文本的原始含义和结构。)