现有的四平方密码,特别是具有锯齿形变换加密算法的四平方英尺,是本研究的基础,旨在解决其加密限制。现有算法无法用数字和特殊字符加密消息,可以轻松破解键,当该过程重复超过26次时,加密的Digraph与第一个加密的Digraph相同。本研究旨在通过转换5x5矩阵,增强加密解码密钥并改善锯齿形变换来增强现有算法。所采用的方法涉及利用6x6x6立方体来包括大写字母和小写字母,数字和特殊字符。随机加密 - 解码密钥是使用密码固定的伪数字发生器(CSPRNG),斐波那契序列,tribonacci序列和线性反馈移位寄存器生成的。锯齿形变换通过采用rubik的立方体原理,csprng,斐波那契序列和tribonacci序列来改善,以随机化立方体旋转。进行了各种测试以评估增强算法。矩阵比较测试显示了角色集的显着扩展,允许大写和小写字母,数字和特殊字符的利用。加密和解密的文本的比较突出了增强算法将密文归还到原始明文中的能力,超过了现有算法的局限性。增强算法的平均雪崩效应为52.78%,超过了安全的加密算法的最小雪崩效应。统计随机性测试,包括频率(单算)和运行测试,提供了算法随机性的强大证据,满足了安全加密的阈值。
Overview .................................................................................................................................................. 3
在太空环境中,温度波动、冷焊和其他环境因素给设计师带来了新的挑战。立方体卫星在低地球轨道上经历的平均温度范围在日食侧为 -65°C,在太阳侧为 +125°C,因此需要一种能够承受周期性温度波动同时保持其机械性能的材料 [4]。此外,当两个金属表面相互接触时,冷焊是一个值得关注的问题。当两个金属表面之间的间隙变得足够小以至于两个表面的原子共享价电子并相互结合时,就会发生冷焊。这种现象在立方体卫星-分配器界面中令人担忧,两个光滑表面在部署过程中会相互滑动。为了避免这种情况,立方体卫星轨道可以使用聚合物或其他非金属材料。市售尼龙碳纤维 PolyMide PA6-CF 复合材料在上述两种情况下均能发挥理想作用(表 2)。由于在 180°C 下变形最小且无法冷焊,这种 FDM 细丝是模块化 CubeSat 结构的主要候选材料。
数据立方体是可供分析的数据的公认基石 - 将无数场景同质化为几个时空立方体,并统一空间和时间访问,已被证明可以带来更简单、更具可扩展性的服务 - earthserver.eu
太空系统司令部启动 EWS 立方体卫星技术演示 摘要:太空系统司令部的电光/红外气象系统立方体卫星技术演示成功搭载 SpaceX 的 Transporter-10 小型卫星共乘任务发射。这项为期一年的 EWS 立方体卫星技术演示将验证新兴的太空 EO/IR 辐射成像技术,该技术使用较小的传感器,从低地球轨道提供及时的气象图像数据。加利福尼亚州埃尔塞贡多——3 月 4 日,太空系统司令部 (SSC) 从加利福尼亚州范登堡太空部队基地搭载 SpaceX 的 Transporter-10 小型卫星共乘任务发射了其电光/红外 (EO/IR) 气象系统 (EWS) 立方体卫星技术演示。为期一年的 EWS 立方体卫星技术演示将验证新兴的太空 EO/IR 辐射成像技术,该技术使用较小的传感器,从低地球轨道 (LEO) 提供及时的天气图像数据。“EWS 立方体卫星技术演示工作代表了 SSC 继续致力于与非传统合作伙伴合作,以拓宽竞争性工业基础,同时培育潜在的突破性解决方案,”EWS 物资负责人兼项目经理 Joe Maguadog 中校说。“如果成功,这将提供一种创新的选择来提供我们渴望评估的太空环境监测数据,这对于使我们部署在世界各地的部队能够计划和执行战区联合行动至关重要。这次演示将为我们向更经济、可扩展且更具弹性的 EO/IR 气象星座的过渡提供信息。” 2020 年 6 月,EWS 计划通过竞争选择了非传统政府承包商 Orion Space Solutions (OSS) 来交付用于此次演示的立方体卫星。这次任务迅速重建了之前的 EWS 立方体卫星技术演示原型能力,该原型在 2023 年 1 月经历了在轨分离异常。美国太空部队 (USSF) 与 OSS 密切合作,能够在不到 30 天的时间内授予新合同,并在短短 10 个月内开发了另一颗卫星。
当定制至关重要时,光学参考腔 (ORC) 系列就是我们的解决方案。您可以从出色的适配、辅助仪器和服务组合中进行选择,并从我们设计多代超稳定激光系统的经验中获益。ORC 系列是法布里-珀罗型腔,其谐振腔垫片由超低膨胀玻璃 (ULE) 制成。腔体安装在密封真空外壳中,具有出色的温度稳定性,可实现低频率漂移。紧凑的设计确保最小的空间需求。ORC-Cubic 可作为 6U、19 英寸机架模块使用。它基于国家物理实验室授权的刚性安装的立方体垫片。ORC-Cylindric 使用由德国联邦物理技术研究院设计的圆柱形垫片,水平安装在四个支撑点上。在这里,机械锁定机制确保了便携性。有各种附加组件和选项可供定制:镜面基底有 ULE 或熔融石英 (FS) 两种,镜面涂层可以是离子束溅射 (IBS) 或晶体 (XTAL),当低热噪声至关重要时,需要后者。高反射涂层适用于很宽的波长范围,也可作为双重或三重高反射镜。输入耦合、PDH 锁定和输出监控模块可以牢固地安装到腔体上,从而省去了运输后的繁琐重新调整。每个系统都在组装过程中经过烘烤。内置的 NTC 和 Peltier 元件可通过真空馈通装置接触,从而允许在热膨胀系数 (CTE) 的零交叉处工作。可根据要求提供 CTE 特性。两种腔体也可不带外壳。
摘要:行进立方体是3D重建的最广泛使用的等曲面算法。在案例研究中,本文使用了来自大脑图像的MRI的医学数据,尤其是在call体(CC)部分中,以及来自Stagbeetle数据集的音量数据。选择此案例研究以突出3D图像可视化的临床重要性。这项研究可以通过显示固体解剖形状和位置来帮助,这可以指导脑损伤的位置,而小于1 mm的较小误差;因此,它可以支持和最大程度地减少脑外科手术的风险。案例研究是称为call体的大脑的一部分,通常用作脑部手术的参考。对于输入数据,本文使用深度学习方法使用2D分割来获得CC段。本文使用120名患者,培训80%,在国家医院进行测试20%。本文发现了11个矢状切片,其中包含每位患者的166个切片中的call体。这项工作提出了一种改进的MC算法,为现有规则增加了20个新规则,加强了Voxel代表的规则,并将原始的Martinging Cubes算法的15条规则增加到35。因此,3D重建模型覆盖了大孔,使其在很大程度上固体。拟议的3D可视化实现了来自国家医院的数据集的零开放边缘。结果表明,应用改进的行进立方体算法产生了一个3D表示,其结果更好,更健壮,这证明了存在更多的顶点和三角形以及不存在开放边缘的情况。高级游行立方体是拆除开放边缘的好方法。
2024 年 2 月 12 日——iEDU inc. 的“太空立方体”项目是唯一针对学生举办的全球性竞赛。年龄在 11-18 岁之间,可以设计和提案。
摘要 — 空间天气大气可重构多尺度实验 (SWARM-EX) 是一种分布式大气物理学仪器,由三个在低地球轨道运行的 3U 立方体卫星组成。在美国国家科学基金会和美国宇航局立方体卫星发射计划的支持下,SWARM-EX 旨在实现一系列具有挑战性的科学和工程目标。该任务的科学目标集中在通过使用每个航天器上的通量探测实验和平面朗缪尔探针传感器对赤道热层异常和赤道电离层异常进行现场测量来解决悬而未决的大气物理学问题。工程目标集中在通过一系列演示和实验来推进立方体卫星集群的最新技术。本文介绍了三项创新,这些创新将使 SWARM-EX 能够克服其重大挑战。首先,将科学目标形式化为一系列主要科学问题和次要测量演示,然后将其转化为必须进行现场测量的空间和时间尺度。然后使用这些尺度来定义航天器必须达到的相对轨道几何形状。其次,引入一种制导、导航和控制系统,该系统能够获取和维持所需的相对轨道配置。所提出的系统只需要地面控制员的最少输入,在航天器间近距离分离时提供被动安全性,并且能够通过利用新颖的混合推进/差动阻力控制方法以最少的推进剂消耗有效地实现大型集群重构。第三,提出了一种操作概念,使任务目标能够以时间和推进剂的高效性实现,同时对在轨异常提供显著的容忍度。详细讨论了操作概念,包括 (1) 每个阶段要解决的具体任务目标、(2) 每个阶段以及阶段过渡期间要使用的控制方法,以及 (3) 按阶段划分的 ∆ v 预算及其获取方式的说明。介绍了控制方法的交易,以及管理集群操作时面临的一些具体挑战,因为集群之间的航天器间隔从数百米到数千公里不等。
