立方体卫星这种纳米卫星引起了空间科学家和工程师的关注,他们希望观察太空环境并开发空间工程的创新技术。立方体卫星是一种小型卫星,其外形尺寸基于 10 厘米立方体。然而,立方体卫星的尺寸限制限制了将相对较大的任务设备(例如姿态控制系统)嵌入卫星。此外,用于传输数据和为任务设备供电的线束也占用了嵌入任务设备的物理空间。因此,本研究调查了早期关于纳米卫星线束设计的研究。此外,我们考虑了卫星总线系统光学无线线束的可能性,以实现更有效、更可靠的立方体卫星设计。
摘要:随着立方体卫星执行复杂和先进任务的能力不断提高,它们正被考虑用于诸如星座之类的任务,这些任务需要很高的开发效率。从卫星接口的角度来看,通过实施灵活的模块化结构平台,可以最大限度地提高生产率,从而在集成和测试阶段轻松实现可重构性。因此,立方体卫星的结构设计在促进卫星集成过程中起着至关重要的作用。在大多数情况下,在主负载支撑结构和内部卫星子组件之间实施的机械接口通过增加或减少复杂性来影响卫星集成的速度和效率。大多数立方体卫星结构设计使用堆叠技术,使用堆叠杆/螺钉将 PCB 安装到主结构上。因此,内部子系统是相互连接的。观察到这种传统的接口方法增加了结构部件的数量,同时增加了集成过程中的复杂性。在这项研究中,基于插槽概念开发了灵活的 3U 和 1U 立方体卫星平台。这种创新的安装设计提供了一种将 PCB 安装到插槽中的简单方法。评估并验证了该概念在批量生产应用中的可行性。进行了计数和复杂性分析,以评估所提出的设计与传统类型的结构接口方法。评估表明,这一新概念显著提高了批量生产过程的效率。
摘要:增材制造 (AM) 在航天领域的应用日益广泛,这促使我们研究了通过复合行星齿轮系系统 (C-PGTS) 集成动态平衡系统 (DBS) 并完全通过 AM 实现的单自由度 (DoF) 指向系统 (PS) 的可行性。我们详细分析了系统的动力学,涉及原型的设计和实现。对于本文而言,至关重要的是精心选择适合太空恶劣条件的 AM 材料。通过比较实验部分和模拟结果,我们强调了 PS 的正确尺寸以及 DBS 在维持卫星姿态方面的重要性。结果还证实了 AM 在生产复杂机械系统方面的能力,该系统具有高精度、有趣的机械性能和低重量。这表明 AM 在空间领域具有潜力,既可用于结构部件,也可用于本文中列出的有源部件。
本文已接受出版并经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi: 10.1002/ente.202000301
本文中表达的观点是作者的观点,并且不反映美国空军,国防部或美国政府的官方政策或立场。该材料被宣布为美国政府的工作,在美国不受版权保护。
{hannu@vanharanta.fi, evangelos.markopoulos@faculty.hult.edu} 摘要。组织中的知识创造对于其持续存在至关重要。我们有兴趣查询和了解我们知道什么、我们如何知道、我们做什么以及如何证明一切,以便我们能够领导和管理组织。因此,遵循认识论传统(即 Episteme)非常重要。然而,这还不够,因为推理必须与知识创造(即 Sophia)齐头并进,才能知道为什么做事、使用什么概念以及可能实现哪些目标。反过来,Techne 与科学和理论知识一起开发了新的重要的技术和实践知识,以使事情发生。这三个知识维度仍然缺乏真正的动手实践知识和智慧(即 Phronesis),以展示如何以及知道应该决定什么。本研究论文展示了如何使用知识的四个不同维度来理解知识和智慧创造的哲学背景。
有效载荷子系统:有效载荷子系统执行 TrustPoint 的替代定位、导航和授时 (PNT) 服务所需的机载处理、RF 信号生成和高精度计时。有效载荷由用于有效载荷计算和波形生成的数字子系统、GNSS 接收器(参见上面的通信系统部分)、用于计时的时钟子系统和用于放大和过滤的 RF 模拟子系统组成。在总线底盘的外部,有效载荷与两个 C 波段发射天线、一个 C 波段接收天线和一个 GNSS 天线连接,所有这些都是共形非可展开贴片天线。总线底盘的外部还安装了一个激光反射器,用于支持高精度轨道测定的激光测距实验。