CogniSAT-XE1 TM 板的数据传输和命令控制通过 USB 或以太网接口进行。该板充当机载计算机 (OBC) 上客户端应用程序的服务器。在 OBC 上运行,板操作完全由 Ubotica™ 软件控制。OBC 通过所选接口将固件(启动映像)和 NN blob 和/或 DPE 配置传输到板。初始传输后,图像可以通过接口传输到板,操作结果通过同一接口传回。板的电源循环需要重新传输固件。
摘要:本文旨在促进专有技术的开发以及对技术应用过程所必需的航空航天概念研究中的集成技术的评估和选择。所要解决的问题在于缺乏模块化平台和低成本测试系统,无法进行卫星系统的实验开发和模拟。因此,与此相比,提出了 1U CubeSat 标准的可扩展模块化平台的提案作为主要结果。从可持续性概念出发提出的设计和特性描述过程有助于使用和开发低成本设备,最大限度地减少对环境的影响,进而切实可行地将其应用于促进哥伦比亚空间技术传播的团体和研究中心的活动中。可持续设计的方法、设计原则的定义和概念设计,通过应用质量功能部署方法 (qfd)、发明问题解决理论 (triz)、可制造性导向设计 (DfM)、可装配性 (DfA)、环境影响 (DfE)、可靠性 (DfR) 和安全性评估来实现,这些对于遵守 cds 中描述的 CubeSat 操作标准都至关重要。最后,提出了几种使用不同材料的低成本测试平台的构造模式,例如纸、abs、mdf 木材和铝的 3D 原型。它们都是以低成本设计和建造的小型卫星结构。这些设计使测试机载系统和组装和材料集成阻力成为可能,在实验室中用作振动试验台,供有兴趣促进空间技术发展的研究团体或公司使用。
九州工业大学的第四代 1U 立方体卫星星座 BIRDS-4 于 2021 年 3 月从国际空间站 (ISS) 部署。BIRDS-4 项目成功建造了巴拉圭的第一颗卫星 (GuaraniSat-1),同时改进了标准化的总线系统以用于未来的任务。BIRDS-4 立方体卫星星座展示了 BIRDS 总线系统在 1U 平台上处理从技术演示到科学实验的总共九项任务的能力。业余社区可以使用自动数据包报告系统 (APRS) 通过消散来实时传递消息。该模块还用于存储转发任务,以收集偏远地区的数据以建立技术可行性。相机拍摄了地球图像,以便在参与国推广和传播空间科学和技术。 BIRDS-4 还成功执行并演示了其他任务,例如 Henteena 任务、主动姿态稳定、反作用轮手动旋转总电离剂量测量,以及南洋理工大学 (NTU) 设计和开发用于检测和保护组件免受单粒子闩锁影响的芯片任务。并将钙钛矿太阳能电池放置在太空中以检查其性能。本文详细讨论了 BIRDS-4 任务、在轨结果以及从每个任务的成功程度中吸取的教训。它还讨论了使 BIRDS 总线系统能够处理多个任务的方法
立方体的合成无功能立方体(Cub unfun ;由 GMO、尼罗河红和 F127 组成的空立方体)和空白立方体(Cub blank ;未经功能化的 PEG 化阳离子立方体,由 GMO、DSPE-PEG-Mal、DOTAP、尼罗河红和 F127 组成)的制备采用之前发表的方法并进行了一些修改 [1]。将 GMO、DSPE-PEG-Mal、DOTAP、尼罗河红、helenalin、SPION 溶解在乙醇中并充分涡旋混合(表 S1)。在 70 °C 的真空条件下在加热块中蒸发有机溶剂,然后在 N 2 气流下进一步干燥。将脂质混合物冷冻干燥过夜。然后将 2 微克/毫升 Pluronic F127(溶于 PBS)加入干脂质中,然后以 20 kHz 的频率进行超声处理,开启 5 秒,关闭 5 秒,持续 5 分钟。为了将未封装的化合物(如 helenalin 和 Nile Red)从立方相分散体中分离出来,使用 10 kDa MWCO Slide-A-Lyzer MINI 透析装置(Fisher Scientific Ltd,拉夫堡,英国)对溶液进行透析 2 小时。对于抗体结合,将 5 µg 抗 CD221 抗体与 50 ng Traut 试剂(Sigma Aldrich,吉林汉姆,英国)在磷酸盐缓冲液(0.1 M,2 mM EDTA,pH 8.0)中在室温(RT)下反应 1 小时进行硫醇化,导致 -SH 基团附着到完整的抗体上 [2]。或者,抗 CD221 抗体通过与 10 mM DTT 在室温下反应 2 小时在铰链区处被切割。反应结束后,通过 10 kDa MWCO 透析 2 小时从硫醇化抗体或半抗体中去除残留化学物质 [3]。纯化的硫醇化抗体或半抗体通过抗体的-SH 基团和立方体上的马来酰亚胺基团之间的硫醇-马来酰亚胺迈克尔反应过夜结合到 Cub 空白中,形成 Cub wh-Ab 或 Cub ha-Ab 。对于透明质酸 (HA) 结合,将不同体积的 1 mg/mL 透明质酸与 Cub 空白在室温下孵育 4 小时,产生 Cub 1-5%HA 。我们在溶剂蒸发之前将不同量的 SPION 掺入脂质混合物中,并通过超声处理生成 Cub 1-5%ION。通过将半抗体与 Cub 1%ION 结合,再与 HA 连接,合成三功能立方体 (Cub fun)。立方体中海伦那林的包封率 (EE) 是通过将载有海伦那林的立方体经 10 kDa MWCO 透析后用乙醇溶解,并通过液相色谱 (LC) 定量 NPs 中包封的海伦那林,然后将包封的海伦那林的量除以海伦那林的总量并乘以 100 来计算的。海伦那林的释放率是通过从 100 中减去 EE 来评估的。
慕尼黑轨道验证实验 (MOVE) 是一个立方体卫星学生项目,由慕尼黑工业大学火箭和太空飞行科学工作组负责。MOVE-III 是正在开发的第四颗立方体卫星,也是 MOVE 项目的第一个 6U 任务,将在轨道上搭载专门的科学有效载荷。该任务旨在获取低地球轨道亚毫米空间碎片和流星体的现场观测数据,目的是汇编一套通量数据集,以及物体质量和速度测量数据,可用于验证空间碎片模型的小物体估计值,并支持与空间环境特性相关的进一步研究。MOVE-III 立方体卫星采用 MOVE-BEYOND 平台,计划搭载三个碎片密度检索和分析 (DEDRA) 等离子体电离传感器。初步设计评审已于 2022 年初完成,下一个里程碑是关键设计评审,计划于 2023 年完成。本文阐述了任务的科学目标和预期的数据产品,概述了探测器的工作原理,并介绍了整个系统架构、平台配置和子系统交互。此外,还讨论了任务碎片减缓方面的考虑因素。
教育工作者注册并报名参加免费课程或标准课程,以促进学生的学习和研究。提供资源以协助教育工作者。然后,学生设计与现实世界的地球或太空问题或需求相关的实验或技术。实验通过教育工作者代表学生提交的太空飞行申请提出。如果被选中,实验将于 2023 年夏季从 NASA 设施发射并返回学生。
美国军方继续鼓励对强大的卫星通信的需求,以便成功执行国防任务。立方体卫星是一种小型航天器,最初用于扩大航空航天和卫星通信领域的教育机会。这项研究探索了现有和潜在的地面站架构选项,以集成来自立方体卫星的自由空间光通信下行链路。未来的实验计划将侧重于在更多样化的环境中应用此功能,以包括扩展的地面架构机会。系统工程设计和架构方法有助于了解当前的硬件和软件选项以及未来扩展机会的限制。通过考虑可比较的规划方法,可以组织架构开发的替代方案,以帮助识别子系统和地面通信接口的控制因素。作为一个成熟的立方体卫星通信系统,现有的移动立方体卫星指挥和控制 (MC3) 架构是实验集成和最终考虑计划概念验证的绝佳候选者。
对于这一特定任务,该联盟已初步确定了两个可能的研究案例:LUMIO 和 M-ARGO。LUMIO(月球流星体撞击观测器)是一颗 12U 立方体卫星,将进入地球-月球 L2 晕轨道,通过探测流星体的闪光来观察、量化和描述流星体对月球背面的撞击,补充地球上对月球正面的观测,以提供有关月球流星体环境的全球信息并有助于了解月球情况。M-ARGO 是一颗 12U 深空立方体卫星,将与近地小行星会合并描述其物理特性以了解其是否存在原位资源,首次展示立方体卫星系统独立探索深空的能力。这两项任务的特点是在恶劣环境中具有高度的自主性和复杂性,因此是正在进行的 ESA RAMS/FDIR 活动的极佳研究案例。在活动的第一阶段,LUMIO最终被选为项目进一步完善的研究案例。
英国制造的 Prometheus 2 成像和监测立方体卫星有望在英国发射 空中客车联合设计的 Prometheus 2 立方体卫星已完成最终环境和振动测试,准备从康沃尔发射 @AirbusSpace @dstlmod @Heads_InSpace #defencematters #SpaceMatters #NextSpace 史蒂文尼奇,2022 年 9 月 7 日 — — 由空中客车和 In-Space Missions 联合设计的 Prometheus 2 卫星有望于今年晚些时候从英国康沃尔郡纽基发射,环境测试已完成,振动测试正在进行中。 Prometheus 2 立方体卫星由国防科学技术实验室 (Dstl) 代表国防部 (MOD) 所有。它们由空中客车防务与航天公司共同出资,In-Space Missions Ltd 负责建造。两颗谷物盒大小的 Prometheus-2 立方体卫星将在距离地球约 550 公里的低地球轨道上运行,并将为包括 GPS 在内的复杂成像和监测无线电信号提供测试平台。这些卫星将通过开发以朴茨茅斯附近国防科技实验室为重点的地面系统,支持国防部在轨道和地面的科学和技术 (S&T) 活动。每颗立方体卫星将安装单独的设备,以测试未来概念,以支持国防部未来的太空情报和监视 ISTARI 计划。空客有效载荷将支持公司针对未来低地球轨道操作、ISR 任务概念的内部研发项目以及外部第三方客户的研发需求。空中客车防务与航天英国公司董事总经理理查德·富兰克林表示:“实现这一重要里程碑进一步证明了政府和空客与中小企业合作投资的价值,这些投资旨在快速在轨道上取得成果,并帮助支持和发展英国航天工业生态系统。设计并制造首颗在英国发射的小型卫星,对于参与此次成功合作的所有人来说都是一项伟大的成就,同时也是去年发射的普罗米修斯 1 号有效载荷成功的基础。”这些有效载荷采用了现代软件定义无线电技术,还将使第三方组织能够使用普罗米修斯 2 星座来研究信号收集、卫星间通信、在轨数据处理、空间领域感知和定位、导航和计时或地理定位功能。通过空中客车防务与航天有限公司可以获得此项研究能力。这些卫星是研究演示器,不会用于国防情报、监视和侦察 (ISR) 行动。从这次任务中获得的经验教训将用于降低关键技术风险,产生下一波合作实验,加强国际伙伴关系并支持 Dstl 自己的卫星运营。