抽象的视觉检查有缺陷的轮胎后期生产对于人体安全至关重要,因为故障轮胎会导致爆炸,事故和生命损失。随着技术的进步,转移学习(TL)在许多计算机视觉应用中起着影响的作用,包括轮胎缺陷检测问题。但是,自动轮胎缺陷检测很难有两个原因。首先是复杂的各向异性多纹理橡胶层的存在。第二,没有用于缺陷检测的标准轮胎X射线图像数据集。在这项研究中,使用来自全球轮胎公司的新数据集提出了基于TL的轮胎缺陷检测模型。首先,我们收集并标记了数据集,该数据集由3366个X射线图像和20,000张合格轮胎的图像组成。尽管数据集涵盖了15种由不同的设计模式引起的缺陷,但我们的主要重点是二进制分类以检测缺陷的存在或不存在。该具有挑战性的数据集分别分别为70%,15%和15%的培训,验证和测试。然后,对提出的数据集进行了调整,训练和测试的九个常见的预训练模型。这些模型是Xception,InceptionV3,VGG16,VGG19,Resnet50,resnet152v2,densenet121,InceptionResnetv2和MobilenetV2。结果表明,精细的VGG19,Densenet21和InceptionNet模型获得了与文献的兼容结果。此外,在召回,精度,准确性和F1分数方面,Xception模型优于比较的TL模型和文献方法。此外,它在测试数据集73.7、88、80.2和94.75%的召回,精度,F1分数和准确性的94.75%以及验证数据集73.3、90.24、80.9和95%的召回召回,精度,F1分数和精度分别实现。
摘要 - 汽车行业正在从基于ECU的传统系统过渡到软件定义的车辆。这场革命的核心作用是由容器,轻质虚拟化技术扮演的,这些技术可以在公共硬件平台上灵活地合并复杂的软件应用程序。尽管采用了广泛的采用,但容器化对诸如端到端延迟,通信抖动以及内存和CPU利用等基本实时指标的影响实际上尚未探索。本文为现实世界自动驾驶应用程序提供了微服务架构,该应用程序隔离了每个服务。我们的全面评估也显示了这种解决方案的端到端潜伏期的好处,即使是标准的裸露部署。具体来说,在提出的微服务体系结构的情况下,平均端到端延迟可以提高5-8%。此外,使用容器部署可显着降低最大潜伏期。
space ware TM 是一系列高推力、灵活的电力推进系统,适用于 5 公斤至 1,000 公斤卫星的所有任务需求。无论您是要部署星座、改变航天器的高度或倾角、执行 RAAN 相位、保持轨道还是避免碰撞,space ware TM 都能满足您的需求。
分析我们的研发中心的基因治疗的高质量,具有成本效益的病毒载体的技术转移
网络安全人员和技能的短缺继续影响组织,全球网络安全劳动力差距在2022年达到340万人。这种短缺正在恶化并影响组织对抗网络攻击的能力。短缺的原因包括无法找到合格的人才,高级员工流失,预算有限以及无法提供竞争性工资。为了应对这一挑战,组织可以采取三个关键措施:安全工具的合并以降低复杂性,自动化流程以减轻员工的工作量以及利用完全管理的安全服务将某些职能外包给专家提供者。这些措施可帮助组织维持有效的网络安全计划并增强保护,同时减轻内部员工的负担。
Aurigene Pharmaceutical Services 是一家全球合同研究、开发和制造组织 (CRDMO)。我们以加速创新的传统为基础,并在小分子和大分子药物发现、开发和制造方面拥有丰富的经验,我们的使命是坚持不懈地为客户的成功而努力,并通过整体方法建立长期关系,以加速分子从实验室到市场的进程。我们为发现化学、生物治疗药物发现、发现生物学、临床 I-III 期计划、监管提交批次和商业制造的开发和制造服务提供集成和独立服务。Aurigene 的独特之处在于其集成的 API 和配方服务,涵盖从关键起始材料、高级中间体和 API 到成品(如口服固体、无菌产品、鼻腔溶液等)。英国、墨西哥、美国和印度的 GMP 商业制造设施补充了我们在印度的开发和制药 API 制造服务。
•策略管理:最大程度地减少网络拥塞涉及防止一个细分市场的性能影响另一部分,以确保特定应用程序的一致和最佳性能。例如,在其专用细分市场上使用店内访客Wi-Fi不会干扰单独的细分市场上发生的信用卡交易速度。
多模式大型语言模型(MLLM)已成为研究界的重要领域,鉴于它们在处理和推理非文本数据(包括图像和视频)方面的处理能力。这项研究旨在通过引入DraveGpt4(一种基于LLMS的新型端到端端驾驶系统)来扩展MLLM的应用到自动驾驶领域。cap-pable促进了对车辆动作的促进,提供相关的推理,并有效地解决了用户提出的各种问题。此外,DriveGPT4以端到端的方式预测低级车辆控制式signals。通过使用定制的视觉说明调谐数据集实现这些高级功能,该数据集是专门针对自主驾驶功能量身定制的,并结合了混合调节培训策略。DriveGPT4代表了利用LLM的努力来开发可解释的端到端自主驾驶解决方案。在BDD-X数据集上进行的评估展示了DriveGPT4的质量和定量性能。从事域特异性数据的微调使DriveGpt4能够在与GPT4-V形成鲜明对比的自主驾驶接地方面产生接近甚至可以证明的结果。代码和数据集将公开可用。
抽象的实时和效率路径计划对于所有机器人系统至关重要。,对于工业机器人而言,这更为重要,因为总体计划和执行时间直接影响生产线中的周期时间和自动化经济学。尽管在静态环境中问题可能并不复杂,但在计划时间和最佳性方面,经典方法在高维环境中是不可能的。碰撞检查在获得复杂环境中的路径计划的实时解决方案方面提出了另一个挑战。为了解决这些问题,我们提出了一个基于端到端的学习框架,即路径计划和碰撞检查网络(PPCNET)。PPCNET通过使用两个网络顺序计算航路点来生成路径:第一个网络生成了路点,第二个网络确定路径是否在路径的无碰撞段上。端到端培训过程基于模仿学习,该学习使用来自专家规划师的经验的数据聚合来同时培训两个网络。我们利用两种方法来训练一个有效近似确切几何碰撞检查功能的网络。最后,在两个不同的仿真环境中评估了PPCNET,并在用于BIN采摘应用程序的机器人臂上进行了实际实现。与最先进的路径规划方法相比,我们的结果通过以可比的成功率和路径长度大大减少了计划时间,显示出绩效的显着改善。
摘要 - 可以解决任务分配问题的智能决策系统对于多机器人系统以协作和自动化的方式进行工业应用至关重要,例如使用移动机器人使用移动机器人,使用无人体表面工具进行的水力调查等仓库检查等。因此,本文旨在解决多代理自动移动系统的任务分配问题,以自主,智能地将多个任务分配给机器人机器人。这种问题通常被视为与成员机器人以下任务计划分离的独立决策过程。为了避免由脱钩引起的亚最佳分配,提出了一个端到端任务分配框架,以解决此组合优化问题,同时在优化过程中考虑了后续的任务计划。该问题被称为多人多epter travely Salesmen问题(MTSP)的特殊变体。提议的端到端任务分配框架采用了深厚的强化学习方法来代替以前工作中使用的手工启发式方法。所提出的框架具有加固学习代理的模块化设计,可以针对各种应用程序进行自定义。此外,提出了基于机器人操作系统2的实体机器人实现设置,以实现仿真到现实差距。执行了仓库检查任务,以验证拟议框架的训练结果。该框架已通过模拟和实体机器人测试与各种参数设置进行了交叉验证,其中适应性和性能得到了很好的证明。