间充质干细胞(MSC)是具有分化为其他类型细胞的成年干细胞。此外,MSC可以调节免疫反应并促进组织修复。由于其性质,主要MSC在治疗各种疾病方面具有显着的应用潜力。然而,主要MSC还具有限制寿命,供体变异性,源限制和异质性等局限性,这阻碍了临床前应用中主要MSC的利用。这些约束可以通过永生化来克服。细胞永生技术可以建立保留正常生理学的新细胞模型,表现出最小的细胞异质性并获得不确定的寿命。在这项研究中,我们通过稳定表达人端粒酶逆转录酶(HTERT)基因在正常的人类原发性骨髓 - 衍生的间充质干细胞(BM-MSC)中产生了一个永生的克隆细胞系。这种永生的细胞系已培养超过200天,并继续繁殖超过120个人口加倍。永生的BM-MSC表现出正常的核型,并且与父母原代细胞具有相似的细胞生长曲线和细胞的两倍时间。永生的BM-MSC对CD73,CD90和CD105呈阳性,对于CD14,CD34和CD45为阴性。在这项研究中,我们还研究了这些永生的BM-MSC的脂肪生成,成骨和软骨分化能力。总而言之,永生的BM-MSC提出了一种新的细胞模型,该模型避免了原代细胞的局限性,可以用作细胞和基因治疗的有价值的工具。
理学硕士 I 期 MM:75 分子生物学单元 1:基因组的结构和组织(8 小时)染色质组织 - 组蛋白和 DNA 相互作用组、染色质结构、核小体、染色质组织和重塑、染色体、异染色质和真染色质、扭转应力、DNA 拓扑结构 - 链接数、扭曲、扭动、超螺旋、拓扑异构体。第二单元:DNA复制、修复和重组(8 小时)DNA复制模型,Meselson 和 Stahl 实验,DNA聚合酶,病毒、细菌和真核生物中的 DNA 复制,复制叉,复制的校对和保真度,末端复制问题和端粒酶,复制抑制药物,DNA损伤剂,DNA修复机制(核苷酸切除修复、碱基切除修复、错配修复、重组修复、双链断裂修复、转录偶联修复、重组——同源、非同源和位点特异性重组)第三单元:基因表达和调控(8 小时)原核和真核基因的结构、调控区域、转录因子、转录机制、RNA聚合酶、RNA加工结构和不同 RNA 类型的功能、起始复合物的形成、延长、终止;操纵子概念-乳糖操纵子、色氨酸操纵子、arb操纵子、𝜆-阻遏物、lexA阻遏物、噬菌体的溶源性和溶解性循环、核糖开关、转录抑制剂。
肾细胞癌 (RCC) 是最致命的泌尿系统癌症,临床实践表明,RCC 对常见疗法的耐药率极高。小檗碱是一种异喹啉生物碱,存在于不同种类的植物中,长期以来一直用于中药。它具有抗氧化、抗炎、抗糖尿病、抗菌和抗癌等多种特性。此外,小檗碱具有光敏特性,其与光动力疗法 (PDT) 相结合可有效对抗肿瘤细胞。本研究旨在评估小檗碱与 PDT 相结合对肾癌细胞系的影响。细胞活力测定显示细胞毒性以浓度和时间依赖性方式增加。小檗碱在所有分析的细胞系中均表现出有效的内化作用。此外,在用小檗碱与 PDT 相结合治疗后,观察到高光毒性作用,活细胞不到 20%。在本研究中,我们观察到活性氧 (ROS) 水平的增加伴随着自噬水平的增加和 caspase 3 活性导致的细胞凋亡,表明细胞死亡是通过这两种机制进行的。此外,抗癌药物的三种靶基因在 786-O 细胞中存在差异表达,即在用小檗碱联合 PDT 治疗后,血管内皮生长因子-D ( FIGF) 和人端粒酶逆转录酶 ( TERT ) 基因呈现低表达,而 Polo 样激酶 3 ( PLK3) 呈现过表达。在本研究中,拟议的治疗方法引发了与细胞增殖、肿瘤发生和血管生成有关的代谢物变化。因此,有可能表明小檗碱作为光动力疗法中的光敏剂具有良好的潜力,因为它对肾癌细胞诱导了显著的抗癌作用。
背景:癌症疫苗 Vx-001 以通用肿瘤抗原端粒酶逆转录酶 (TERT) 为靶点,可以装载特定的 Vx-001/TERT 572 CD8 + 细胞毒性 T 细胞;这种免疫反应与晚期/转移性非小细胞肺癌 (NSCLC) 患者的总生存期 (OS) 改善有关。方法:一项随机、双盲、2b 期试验,受试者为 HLA-A*201 阳性、转移性、表达 TERT 的 NSCLC 患者,他们在接受一线铂类化疗后没有进展,随机接受 Vx-001 或安慰剂治疗。试验的主要终点是 OS。结果:221 名患者被随机分配,并对 190 名(安慰剂组和 Vx-001 组分别为 101 名和 89 名患者)进行了疗效分析。没有 > 2 级的治疗相关毒性。该研究未达到其主要终点(安慰剂和 Vx-001 的中位 OS 分别为 11.3 和 14.3 个月;p = 0.86),而中位治疗失败时间 (TTF) 分别为 3.5 和 3.6 个月。分别在接受 Vx-001 和安慰剂治疗的 30 名(33.7%)和 26 名(25.7%)患者中观察到 > 6 个月的疾病控制。没有记录客观 CR 或 PR。在 29.2% 的接种患者中观察到持久的 TERT 特异性免疫反应,与无反应者相比,他们的 OS 明显更长(分别为 21.3 和 13.4 个月;p = 0.004)。结论:Vx-001 可诱导特异性 CD8 + 免疫反应,但未能达到其主要终点。后续研究必须集中于识别和治疗能够对 Vx-001 产生有效免疫反应的患者亚群。临床试验注册:NCT01935154
缩写:AADC,芳香族 L-氨基酸脱羧酶;AAV,腺相关病毒;ALS,肌萎缩侧索硬化症;APOE,载脂蛋白 E;ASO,反义寡核苷酸;ATXN2,共济失调蛋白 2;BBB,血脑屏障;BSCB,血脊髓屏障;CDKL5,细胞周期蛋白依赖性激酶样 5;CNS,中枢神经系统;CRISPR,成簇的规律间隔的短回文重复序列;CSF,脑脊液;DRPLA,齿状红核苍白球路易体萎缩;FTD,额颞痴呆;FUS,聚焦超声;FXTAS,脆性 X 相关震颤/共济失调综合征;GABA,γ-氨基丁酸;GAD,谷氨酸脱羧酶;GAG,糖胺聚糖; GAN,巨轴突性神经病;GBA,葡萄糖脑苷脂酶;GCH,三磷酸鸟苷环化水解酶;GDNF,胶质细胞源性神经营养因子;ICis,脑池内;ICV,脑室内;IPa,脑实质内;IT,鞘内(腰椎);IV,静脉内;LacNAc,硫酸化N-乙酰乳糖胺;MAO,单胺氧化酶;miRNA,微小RNA;MLD,异染性脑白质营养不良;MPS,粘多糖贮积症;MRgFUS,磁共振成像引导聚焦超声;MRI,磁共振成像;MSA,多系统萎缩;NCL,神经元蜡样脂褐素沉积症;NGF,神经生长因子;NTN,神经营养素;PDHD,丙酮酸脱氢酶缺乏症;Put,壳核; rAAV,重组腺相关病毒;RNAi,RNA 干扰;siRNA,短干扰 RNA,小干扰 RNA;SMA,脊髓性肌萎缩;SMARD,脊髓性肌萎缩伴呼吸窘迫;SNc,黑质致密部;SOD1,超氧化物歧化酶 1;Str,纹状体;TDP-43,TAR DNA 结合蛋白 43;TERT,端粒酶逆转录酶;TH,酪氨酸羟化酶;Th,丘脑;VTA,腹侧被盖区;ZFN,锌指核酸酶。 * 通讯作者:德克萨斯大学达拉斯分校,800 West Campbell Road, EW31, Richardson, TX 75080, USA。电子邮箱地址:Zhenpeng.Qin@utdallas.edu (Z. Qin)。
<分为分子场中最常见的技术。必须证明他可以详细阐述有关核酸(DNA和RNA)之间关系的参数,病毒,突发性和真核细胞的基因组组织,核酸与蛋白质与蛋白质之间的相互作用以及上述生物学过程之间的相互作用,并了解其因果关系。从关于核酸的结构和功能的概念开始,必须知道主要分子生物学技术的基本原理。能够应用知识和理解学生必须能够独立处理并应用课程中获得的信息,以了解生物学的分子视觉,并指出和/或设计了主要方法论方法,独立评估旨在分析DNA,RNA和蛋白质的实验结果,在诊断,食物,食物,环境,环境和工业和工业和工业和工业领域也应用知识。 学生必须能够通过独立于分子领域的文本和科学文章来应用获得的知识来更新自己,并获得遵循专业研讨会,会议,大师的能力。 < <分为分子生物学领域。 程序 - 促脂碱,核苷,核苷酸。 核酸的一级和二级结构。 三维DNA DNA结构:DNA B,DNA A和DNA Z. DNA结构的动力学。 RNA结构。能够应用知识和理解学生必须能够独立处理并应用课程中获得的信息,以了解生物学的分子视觉,并指出和/或设计了主要方法论方法,独立评估旨在分析DNA,RNA和蛋白质的实验结果,在诊断,食物,食物,环境,环境和工业和工业和工业和工业领域也应用知识。学生必须能够通过独立于分子领域的文本和科学文章来应用获得的知识来更新自己,并获得遵循专业研讨会,会议,大师的能力。 <<分为分子生物学领域。程序 - 促脂碱,核苷,核苷酸。核酸的一级和二级结构。三维DNA DNA结构:DNA B,DNA A和DNA Z. DNA结构的动力学。RNA结构。RNA结构。DNA上层建筑。拓扑异构酶。(1CFU)DNA变性和肾脏化。基因组的维度和复杂性。转座。病毒和促进物中遗传物质的组织。DNA病毒。RNA病毒,逆转录病毒和逆转录。 圣体式中遗传物质的组织:染色质,核小体,组蛋白,染色体。 伊斯顿的化学变化(istonic代码)和基因表达。 istonic基因和变体。 (2CFU)DNA的重复。 <离婚开始,延长和期限。 病毒,突发性和真核生物复制的分子机制示例。 蛋白质参与重复合成。 大肠杆菌的DNA聚合酶及其特征。 真核生物的DNA聚合酶。 端粒酶。 (1CFU)RNA的类型及其丰度。 在促进症中的转录:RNA聚合酶。 转录单元。 rRNA和TRN转录本的成熟。 关于Procariali(操纵子和衰减)转录的调节的注释。 转录到真核生物:RNA聚合酶I,II,III。 <特定于女主角的启动子。 mRNA,rRNA和tRNA的主要转录本的成熟。 RNA编辑。 内含子的概念。 s-splicing机制,前mRNA,pre-tRNA和rRNA。 变形。 绝缘子。RNA病毒,逆转录病毒和逆转录。圣体式中遗传物质的组织:染色质,核小体,组蛋白,染色体。伊斯顿的化学变化(istonic代码)和基因表达。istonic基因和变体。(2CFU)DNA的重复。<离婚开始,延长和期限。病毒,突发性和真核生物复制的分子机制示例。蛋白质参与重复合成。大肠杆菌的DNA聚合酶及其特征。真核生物的DNA聚合酶。端粒酶。(1CFU)RNA的类型及其丰度。在促进症中的转录:RNA聚合酶。转录单元。rRNA和TRN转录本的成熟。关于Procariali(操纵子和衰减)转录的调节的注释。转录到真核生物:RNA聚合酶I,II,III。<特定于女主角的启动子。mRNA,rRNA和tRNA的主要转录本的成熟。RNA编辑。 内含子的概念。 s-splicing机制,前mRNA,pre-tRNA和rRNA。 变形。 绝缘子。RNA编辑。内含子的概念。s-splicing机制,前mRNA,pre-tRNA和rRNA。变形。绝缘子。基因表达调整:染色质结构和DNA甲基化。转录调控和转录因子。增强剂和消音器。转移后调整。统一静音(siRNA,microRN)。lncrna。稳定性和真核生物的RNA的降解。(2,5 CFU)
先前已从皮肤活检中收获了原代真皮犬成纤维细胞。使用人类端粒酶逆转录酶 (hTERT) 对真皮犬成纤维细胞进行永生化,以从每个供体 (PDK4 野生型或 wt/wt、PDK4 杂合子或 wt/del、PDK4 纯合子或 del/del) 中创建永生化细胞系。这些细胞将在含有 10% 胎牛血清和 1% 抗生素抗真菌剂的 Dulbecco 改良 Eagle 培养基的 6 孔板中接种和培养。将使用 QuickExtractTM DNA 提取溶液提取 DNA。将使用 Thermo Scientific NanoDropTM 1000 分光光度计对 DNA 进行分光光度定量。提取 DNA 后,将对 PDK4wt/wt 和 PDK4del/del 细胞中的 PDK4 基因进行 PCR 扩增。扩增后,将使用 DNA Clean & Concentrator™-25 试剂盒纯化 PCR 产物以进行裸 DNA 切割反应。兽医学学生将测试一种名为 KKH 的新酶,它是 Cas9 变体,可在不同的 PAM 或识别位点切割 DNA。我们使用计算方法确定 KKH 将在 PDK4 基因中所需的切割位点切割,从而有效地为插入双链寡脱氧核苷酸 (dsODN) 探针腾出空间。该 DNA 片段将通过同源重组将缺失的 16 个碱基对添加到基因中。已经设计了两个 dsODN,它们包含“丢失的外显子”序列以及与 DCM1 相关的缺失的 16 个碱基对,并将通过核转染反应测试它们是否掺入细胞 DNA 中。dsODN1 由 DCM1 突变两侧的 300 个碱基组成,dsODN2 由突变两侧的 350 个碱基组成。正向和反向引物组将由 Integrated DNA Technologies(IDT,美国爱荷华州科勒尔维尔)合成。将对每个引物组进行 PCR 梯度,退火范围为 dsODN1 的 55°C 至 67°C 和 dsODN2 的 54°C 至 64°C。目标是将缺失的 PDK4 片段插入切割的 DNA 中,并将在体内缺失 16 个碱基对的成纤维细胞中使用核转染试验进行测试。此后,将从细胞中提取 DNA 并评估整合效果。
生殖衰老始于女性的30多岁,更年期通常发生在48至50岁之间,而卵母细胞库存(卵巢衰老)的耗尽是女性一生中不可避免的过程,最终会影响预期和健康的影响。卵巢老化是一个多维过程,其特征是卵泡数量和卵母细胞质量的逐渐下降,大约37岁左右,导致后代的不育和先天性残疾增加(1)。尽管重要性很重要,但对人类卵巢衰老的基本生物学机制知之甚少,尤其是在延长女性生育能力和改善人口质量方面。尽管预期人类的预期寿命在过去一个世纪中显着延长,但绝经年龄在很大程度上保持不变,这暗示了遗传和表观遗传因素的潜在作用,但典范标志着启动的启动偏离衰老的启动,而在47%的案例中,遗传的年龄是遗传的,而不是遗传的年龄。口服避孕药,饮酒,吸烟和体育锻炼水平(3,4)调节这种内分泌老化过渡。最近,下丘脑 - 垂体轴的衰老以及端粒酶活性降低已成为生殖衰老的关键催化剂(5)。卵泡闭锁是由于颗粒和卵母细胞的细胞凋亡引起的,这是由活性氧(ROS)产生过多引起的,也会导致卵巢衰老。Wang L.等。 inWang L.等。in最近的研究使遗传多态性确定为自然更年期年龄异质性的主要贡献者,尤其是对于参与DNA修复途径的基因。病理卵巢衰老,例如早产卵巢不足和早期,也表现出相似的遗传敏感性(6)。这一现象的核心是卵巢功能的卵泡发育和维持,尤其是DNA甲基化的表观遗传修饰,在卵巢发育的关键阶段对基因表达产生了显着影响。这些研究提供了阐明遗传学与环境对卵巢衰老的相互作用的影响。该研究主题重点介绍了描述生理和病理卵巢衰老的遗传和表观遗传机制方面所取得的一些进步,从而提供了对延长女性生殖寿命的潜在机制的见解。研究表明DNA甲基化(DNAM)衰老与生殖衰老之间的联系。但是,DNAM与更年期年龄之间的因果关系仍然不确定。技术进步使使用各种分子或表型生物标志物测量生物年龄成为可能。
超螺旋和拓扑性质。拓扑异构酶。细菌类核。组蛋白和核小体的性质和组装。染色质的高级结构。组蛋白的翻译后修饰。溴多胺和染色质结构域。表观遗传学。原核生物和真核生物的基因组。复制模型。DNA合成。细菌DNA聚合酶。校对和缺口翻译。复制子模型。OriC和半甲基化。Ter/Tus。真核细胞核中的复制工厂。ARS结构和复制控制。酶学。前RC和前启动复合物。复制抑制剂,如化疗药物和抗病毒药物。端粒和端粒酶的结构、功能和意义。DNA损伤和修复。基因组作为动态实体。体细胞和种系突变。SNP。内在和外在损伤。化学和物理诱变剂。原核生物和真核生物中的去除、逆转和损伤避免系统。MUT 系统。BER 系统。糖基化酶的重要性。安全系统。NER 系统:UvrABCD 和 XP 蛋白。GG-NER 和 TC-NER。光解作用、MGMT、AlkBH。损伤耐受机制。TLS。细菌中的 SOS 反应。单丝和双丝断裂。HR 和 NHEJ。由于修复系统突变而导致的人类疾病。位点特异性重组。重组酶。Lambda 噬菌体。Cre-Lox 系统和 KO 小鼠。简单和复杂的转座子。SINE 和 LINE 元素、Alu 序列。原核生物和真核生物中的 RNA。结构、类型和特性。细菌 RNA 聚合酶和相关因子。转录单位。转录步骤。细菌启动子中的共识序列。终止机制。抑制剂。 Lac、ara 和 trp 操纵子。阳性和阴性对照。真核细胞中的 RNA 类别。RNA 聚合酶 (CTD) 的结构和功能。三种启动子的特征。基础转录机制。TFIIH。反式激活因子、辅激活因子。CpG 岛甲基化。组蛋白密码。长程调节剂。DNA 结合蛋白的功能域 (HTH、HD、HLH、ZF、LZ)。RNA 成熟、核运输和转录后控制。加帽类型。添加 polyA。CTD 的变化。外显子和内含子。外显子改组。四类内含子及其去除机制。剪接体和剪接位点。AT-AC 剪接。EJC 复合体。可变剪接。ESE 和 ESS 序列、SR 和 hnRNP 蛋白。SMN 基因。剪接和病理。rRNA 和 tRNA 加工反应。核糖体基因。 SnoRNA 和核仁功能。RNA 编辑。插入和转换编辑。人类 RNA 编辑的示例。细胞核和细胞质中的 RNA 周转。外泌体。无义介导的 mRNA 衰变 (NMD)。非编码 RNA。小 RNA 在细胞中的功能。RNA 干扰。siRNA。微小 RNA 的生物发生。miRNA、长链非编码 RNA、环状 RNA 的作用机制。逆转录病毒的一般信息。遗传密码和翻译。遗传密码的性质和特征。线粒体密码。ORF。tRNA 的特征。不常见碱基。aa-tRNA 合成酶的功能和类别。遗传密码的翻译重编码和扩展。SeCys。核糖体是一种核酶。原核生物和真核生物的翻译阶段。不同的启动机制。能量成本。NSMD。细菌中的 tmRNA。抑制剂。蛋白质的翻译后修饰、分选和降解。折叠和错误折叠。朊病毒。HSP60 和 HSP70。泛素和泛素化系统。SUMO 化糖基化。蛋白酶体。肽信号。蛋白质分选。线粒体输入。线粒体基因组细胞中的线粒体可塑性。人类线粒体基因组。遗传、结构、复制及其表达的原理。线粒体 DNA 中的改变。DNA 克隆的原理。修饰限制系统。克隆载体。cDNA 合成。基因组 DNA 和 cDNA 文库。TA 克隆。表达克隆。基因表达沉默。基因治疗。数据库。基因组编辑元件(Talen、Zn 指、CRISPR/Cas9 系统)。PCR 和 DNA 测序。PCR 的特性。PCR-RFLP。实时 PCR、DNA 测序。NGS。核酸杂交。杂交原理。熔点和严格性。探针制备:切口平移。Southern、Northern、杂交测定。蛋白质印迹。
DNA 是生命的基本蓝图,由一种长链分子组成,其中包含构建和维持所有生物体的指令。它存在于几乎所有细胞中,能够产生蛋白质并在代际之间传递遗传信息。这个来自鲑鱼精子的 DNA 样本属于德国图宾根大学。了解 DNA 的结构和功能彻底改变了疾病研究、遗传易感性评估、诊断和药物配方。它对每个个体都是独一无二的,这使它成为法医科学、识别犯罪、失踪人员和亲生父母的重要工具。在农业中,DNA 有助于改良牲畜和植物。DNA 的发现可以追溯到 1869 年,当时弗里德里希·米歇尔从白细胞中分离出核蛋白。他观察到它在各种组织中的存在并发现了它的遗传作用。阿尔布雷希特·科塞尔后来将其重新命名为脱氧核糖核酸 (DNA) 并分析了它的化学成分。DNA 的转变始于 20 世纪 30 年代初,当时奥斯瓦尔德·艾弗里在纽约洛克菲勒研究所进行了研究。他发现一种细菌与同种菌株的死细胞混合后会转变成有毒形态。弗雷德·格里菲斯于 1928 年首次观察到这一现象。艾弗里的工作以及柯林·麦克劳德和麦克林·麦卡锡的工作表明,这种转变与 DNA 有关。尽管当时并未得到普遍接受,但艾弗里的发现激发了人们对 DNA 的兴趣。几年后,阿尔弗雷德·赫尔希和玛莎·赫尔希于 1952 年进行的实验证实了 DNA 携带遗传信息。到了 20 世纪 50 年代,研究人员开始研究 DNA 的结构以了解其功能。罗莎琳德·富兰克林和莫里斯·威尔金斯与弗朗西斯·克里克和詹姆斯·沃森于 1953 年揭示了双螺旋模型。该结构由两条相互缠绕的链组成,具有四种互补的核苷酸:腺嘌呤、胞嘧啶、鸟嘌呤和胸腺嘧啶。双螺旋结构允许重建遗传信息,从而实现遗传性状的传递。 DNA 分析对于理解生命的生物机制和由基因突变引起的疾病至关重要。DNA 测序和 PCR 等技术使分析分子和识别基因突变成为可能。科学家还可以操纵和构建新形式的 DNA,称为重组 DNA 或基因克隆,这对于大规模药物生产和基因治疗至关重要。随着时间的推移,对核酸、蛋白质和非蛋白质成分的发现和理解也在不断发展。出生于加拿大哈利法克斯的 Oswald T Avery 发现了有丝分裂细胞分裂和染色体的过程。理查德·阿尔特曼将核蛋白改名为核酸,而约翰·弗里德里希·米歇尔去世。莱纳斯·鲍林引入了遗传学的概念,塞韦罗·奥乔亚诞生。亚历山大·托德创造了“基因”一词,保罗·扎梅克尼克描述了 DNA 的构成要素。所罗门·施皮格尔曼绘制了一条染色体图谱,弗朗西斯·克里克、莫里斯·威尔金斯、亚瑟·科恩伯格、弗雷德里克·桑格、罗莎琳·富兰克林、伊芙琳·威特金、西摩·本泽尔、哈尔·戈宾德·科拉纳、约翰·史密斯、约书亚·莱德伯格、TB·约翰逊和 RD·科格希尔也为该领域做出了重大贡献。其他值得注意的事件包括 PB·约翰逊和 RD·科格希尔检测到甲基化胞嘧啶衍生物是硫酸水解结核酸的副产物,但其他科学家很难复制他们的结果。保罗·伯格、马歇尔·W·尼伦伯格、詹姆斯·D·沃森、吴雷、丹尼尔·内森斯、沃纳·阿伯、富兰克林·斯塔尔、贝弗利·格里芬、芭芭拉·麦克林托克、汉密尔顿·O·史密斯、沃尔特·吉尔伯特、斯坦利·诺曼·科恩、赫伯特·博耶、大卫·巴尔的摩、约翰·E·苏尔斯顿、埃尔温·薛定谔、理查德·J·罗伯茨、克雷格·文特尔诞生。四种碱基比例的一致性是人们不断发现的。镰状细胞病被发现是基因突变的结果。埃丝特·莱德伯格对λ噬菌体有了突破性的发现。纯化的DNA和细胞DNA显示出螺旋结构,标志着首次观察到细菌对病毒的改造。DNA在保存遗传密码方面比蛋白质更重要这一点变得清晰起来。DNA的双螺旋结构通过三篇《自然》杂志发表的文章得到证实。莱纳斯·鲍林因其在氨基酸方面的工作获得了诺贝尔奖。弗雷德里克·桑格完成了胰岛素氨基酸的完整序列,而病毒被重构,RNA被发现。信使RNA首次被发现,DNA聚合酶被分离纯化,用于复制DNA。维克多·英格拉姆利用桑格测序技术破解了镰状细胞性贫血背后的遗传密码。弗朗西斯·克里克提出了遗传物质控制蛋白质合成的主要功能。首次实现了体外DNA合成。桑格获得了他的第一个诺贝尔化学奖,为理解基因调控和蛋白质合成步骤铺平了道路。美国国家生物医学研究基金会的成立标志着核酸测序新时代的开始。芭芭拉·麦克林托克发现了“跳跃基因”,同时破解了编码机制。桑格的研究导致了限制酶的发现,紫外线诱变可以通过暗曝光逆转。转移RNA成为第一个被测序的核酸分子,全面的蛋白质序列发表在《蛋白质序列和结构图集》上。遗传密码首次被总结,沃纳·阿伯尔预测了限制酶作为实验室工具的使用。发现了连接酶(一种促进 DNA 链连接的酶),并开发了自动蛋白质测序仪。从杂交细胞中分离出染色体,并组装了功能性噬菌体基因组。发表了 PCR 原理,并从黄石温泉中分离出一种新细菌。产生了生成重组 DNA 分子的概念。在分子生物学的早期,取得了一些重要的里程碑,为现代基因工程铺平了道路。关键事件包括: - 分离和鉴定人类或其他哺乳动物染色体的第一个限制性酶。 - 发现和分离逆转录酶。 - 发表了一种称为修复复制的过程,用于通过聚合酶合成短 DNA 双链和单链 DNA。 - 构建第一个质粒细菌克隆载体。 - 报道噬菌体 lambda DNA 的完整序列。 - 由于安全问题,Janet Mertz 在细菌中克隆重组 DNA 的实验被叫停。 - 首次发表了使用限制性酶切割 DNA 的实验。 - 关于重组 DNA 技术的生物危害的讨论公开化。 - 生成了第一个重组 DNA。 - Janet Mertz 和 Ronald Davis 发表了一种易于使用的重组 DNA 构建技术,该技术表明,当用限制性酶 EcoRI 切割 DNA 时,DNA 会产生粘性末端。 - 报道了 24 个碱基对的测序,以及细菌中 DNA 修复机制的发现 - SOS 反应。 - 开发了 Ames 测试来识别破坏 DNA 的化学物质。 - 首次举办人类基因图谱国际研讨会。 - DNA 首次成功地从一种生命形式转移到另一种生命形式。 - 重组基因研究开始受到监管。 - 重组 DNA 在大肠杆菌中成功复制,随后呼吁暂时停止基因工程,直到采取措施处理潜在的生物危害。 - Mertz 完成了她的博士学位,Sanger 和 Coulson 发表了他们的 DNA 测序加减法。 - DNA 甲基化被认为是胚胎中 X 染色体沉默的机制,并被认为是控制高等生物基因表达的重要机制。 - 阿西洛马会议呼吁自愿暂停基因工程研究。 - 酵母基因首次在大肠杆菌中表达。 - 原癌基因被认为是正常细胞遗传机制的一部分,在发育细胞中发挥着重要作用。 - NIH 发布了重组 DNA 实验指南。 - 人类生长激素经基因工程改造。 - 确定噬菌体 phi X174 DNA 的完整序列。 - 编写了第一个帮助汇编和分析 DNA 序列数据的计算机程序。 - 发表了两种不同的 DNA 测序方法,可以快速对长片段 DNA 进行测序。 - 在大肠杆菌中产生人类胰岛素。 - 诺贝尔奖表彰限制性酶的发现及其在分子遗传学问题中的应用。 - Biogen 为克隆乙型肝炎 DNA 和抗原的技术提交了初步的英国专利。- 爱丁堡大学科学家克隆出第一条 Epstein Barr 病毒 DNA 片段。 - 巴斯德研究所科学家报告成功分离并克隆大肠杆菌中的乙肝病毒 DNA 片段。 - 加州大学旧金山分校科学家宣布成功在大肠杆菌中克隆并表达 HBsAg。 - Biogen 申请欧洲专利,以克隆显示乙肝抗原特异性的 DNA 片段。 这一年,基因工程和 DNA 测序取得了重大进展。第一个基因克隆专利获得批准,为进一步的研究铺平了道路。塞萨尔·米尔斯坦提出使用重组 DNA 来改进单克隆抗体,而桑格获得了他的第二个诺贝尔化学奖。欧洲分子生物学实验室召开了计算和 DNA 序列会议,标志着该领域的一个里程碑。多瘤病毒 DNA 被测序,加州大学旧金山分校的科学家发表了一种在癌细胞中培养 HBsAg 抗原的方法。科学家报告首次成功开发转基因小鼠,同时世界上最大的核酸序列数据库通过电话网络免费开放。第一批转基因植物和小鼠被报道出来,展示了基因工程的威力。研究表明,Upjohn 开发的细胞毒性药物阿扎胞苷可抑制 DNA 甲基化。NIH 同意在 5 年内提供 320 万美元来建立和维护核酸序列数据库。第一种重组 DNA 药物获得批准,在肿瘤样本的胞嘧啶-鸟嘌呤 (CpG) 岛上发现 DNA 甲基化普遍缺失。聚合酶链反应 (PCR) 技术开始被开发作为扩增 DNA 的手段。PCR 实验的结果开始被报道,同时开发了针对乙型肝炎的转基因疫苗,并揭示了第一个基因指纹。嵌合单克隆抗体被开发出来,为更安全、更有效的单克隆抗体疗法奠定了基础。卡罗尔·格雷德 (Carol Greider) 和伊丽莎白·布莱克本 (Elizabeth Blackburn) 宣布发现端粒酶,这是一种在染色体末端添加额外 DNA 碱基的酶。DNA 甲基化被发现发生在称为 CpG 岛的特定 DNA 片段上,而 Mullis 和 Cetus 公司则为 PCR 技术申请了专利。DNA 指纹识别原理被提出,第一起使用 DNA 指纹识别解决的法律案件被解决。聚合酶链式反应 (PCR) 技术被发表,同时还有人类基因组测序计划。开发了一种用于自动进行 DNA 测序的机器,并创建了第一个人源化单克隆抗体。一种针对乙肝的基因工程疫苗获得批准,而干扰素被批准用于治疗毛细胞白血病。美国建立了监管框架来规范生物技术产品的开发和引进。比利时和美国批准了 Engerix-B 等基因工程乙肝疫苗。小规模临床试验的结果公布,包括一项针对输血后慢性乙型肝炎的重组干扰素-α疗法的试验。mRNA被封装到由阳离子脂质制成的脂质体中,并注射到小鼠细胞中,产生蛋白质。Campath-1H被制造出来——这是第一个临床上有用的人源化单克隆抗体。美国国会资助基因组测序,同时开发了一种快速搜索计算机程序来识别新序列中的基因。第一个催化甲基转移到DNA的哺乳动物酶(DNA甲基转移酶,DNMT)被克隆。比利时和美国批准了基因工程乙型肝炎疫苗,标志着基因工程和DNA测序的重大进步。法国和美国的基因突破导致癌症研究、基因测序和DNA分析方面的重大发现。乙型肝炎和囊性纤维化等疾病的疫苗和治疗方法的批准标志着医学科学的重大进步。DNA甲基化研究揭示了其与癌症发展和进展的联系。人类基因组计划正式启动,旨在对整个人类基因组进行测序,并在对包括细菌、病毒和哺乳动物在内的各种生物的基因组进行测序方面取得了重大里程碑。创新的 DNA 测序技术彻底改变了我们对基因进化、疾病诊断和个性化治疗的理解。研究人员已成功应用该技术研究肺炎链球菌对疫苗应用的快速适应。MinION 手持式 DNA 测序仪还被用于识别新生儿重症监护室中 MRSA 爆发的源头。除了在医学上的应用外,DNA 测序在了解神经系统疾病状况和识别防止生物衰老的罕见基因突变方面发挥了至关重要的作用。该技术还被用于预测哪些女性可以从化疗中受益,以及扫描婴儿和儿童的罕见疾病。此外,蛋白质结构的研究对于开发各种疾病的有效治疗方法至关重要。蛋白质由长链氨基酸组成,这些氨基酸扭曲并弯曲成独特的 3D 形状,使它们能够与其他分子相互作用并引发生物反应。蛋白质的形状可能因一个氨基酸的变化而改变,从而导致危及生命的疾病。了解蛋白质结构已导致医学领域取得重大突破,包括发现 HIV 蛋白酶结构,这有助于科学家设计有效的艾滋病治疗方法。此外,这些知识使研究人员能够识别致病病毒和细菌的致命弱点,为更有针对性和更有效的治疗铺平了道路。发现 HIV 蛋白酶的形状对于了解它如何感染细胞至关重要,最终导致开发出蛋白酶抑制剂等有效药物。这些突破将艾滋病毒治疗从死刑变成了可控的疾病,使人们能够长期与病毒共存。然而,艾滋病毒以进化和适应而闻名,随着时间的推移,一些治疗方法的效果会降低。研究人员目前正在研究新一代艾滋病毒蛋白酶抑制剂,以对抗这些耐药病毒株。在相关进展中,科学家们已经确定了艾滋病毒表面的一个不变区域,人类抗体可以靶向该区域,这有望阻止全球近 90% 的艾滋病毒株。这一发现为改进疫苗设计和可能改变一系列疾病生活的治疗方法铺平了道路。基于这些发现,研究人员正在探索对抗流感病毒的新方法,并在临床前试验中取得了令人鼓舞的结果。这项研究的更广泛影响可能导致更有效、更方便、副作用更少的各种医疗状况的治疗方法。