• 插入和提取工具 ................................................................ 34 • 填充塞和虚拟接触件 ...................................................... 34 • ELIO ® 耦合器 ...................................................................... 35 • ELIO ® 机械接头 .............................................................. 35 • ELIO ® 端面检查工具 ...................................................... 36 • ELIO ® ST 抛光夹具适配器 ............................................. 38 • 通用测试连接器 ............................................................. 38
• 插入和提取工具 .................................................. 34 • 填充塞和虚拟接触件 .............................................. 34 • ELIO ® 耦合器 .............................................................. 35 • ELIO ® 机械接头 .............................................................. 35 • ELIO ® 端面检查工具 ...................................................... 36 • ELIO ® ST 抛光夹具适配器 ...................................... 38 • 通用测试连接器 ...................................................... 38
计算机硬盘驱动器中使用的主轴电机通常使用传统的滚珠轴承,但最近趋势已转向使用更先进的流体动力轴承。在流体动力轴承中,沿轴承的内孔和端面形成一组凹槽。润滑油或类似类型的流体被封闭在轴和轴承之间,以使轴能够在不接触轴承的情况下旋转。因此,这种类型的轴承可以比滚珠轴承实现更稳定和更安静的运行。NTN 流体动力轴承单元基于油浸烧结轴承,其实际轴承内含有润滑油。这可防止突然卡住和读取硬盘中存储的数据时可能出现的问题。NTN 的产品在这一领域比其他产品具有竞争优势。随着对可安装在移动电话、音频播放器和 GPS 系统中的紧凑型 HDD 的需求迅速增长,NTN 的流体动力轴承单元正在建立可靠的声誉。
石墨烯是第一种真正的二维材料,[1] 是形成简单六边形晶格的单层碳。剥离的石墨烯薄片表现出了高迁移率和异常量子霍尔效应 (QHE) 等显著的电学特性,引起了人们对其在许多实际应用中的极大兴趣。[2–5] 然而,由于剥离的石墨烯薄片的尺寸限制(通常高达几十微米),石墨的机械剥离无法提供适用于商业晶圆尺寸电子器件或精确电阻计量的石墨烯。当 SiC 衬底在超高真空或惰性气体氛围中以高于 1000°C 的温度退火时,Si 升华后碳会残留在 SiC 表面并重新排列形成石墨烯层。这种外延石墨烯 (EG) 已准备好用于大规模器件制造,无需转移到另一个绝缘基板上。在六边形 SiC 晶片的硅端面 (Si 面) 上生长的石墨烯由于与 SiC 晶体的方位角取向一致,可以形成大域。与在相反 (碳) 面上生长的石墨烯相比,在 Si 面上,EG 还具有更可控的生长动力学。最近,通过优化
石墨烯是第一种真正的二维材料,[1] 是形成简单六边形晶格的单层碳。剥离的石墨烯薄片表现出了高迁移率和异常量子霍尔效应 (QHE) 等显著的电学特性,引起了人们对其在许多实际应用中的极大兴趣。[2–5] 然而,由于剥离的石墨烯薄片的尺寸限制(通常高达几十微米),石墨的机械剥离无法提供适用于商业晶圆尺寸电子器件或精确电阻计量的石墨烯。当 SiC 衬底在超高真空或惰性气体氛围中以高于 1000°C 的温度退火时,Si 升华后碳会残留在 SiC 表面并重新排列形成石墨烯层。这种外延石墨烯 (EG) 已准备好用于大规模器件制造,无需转移到另一个绝缘基板上。在六边形 SiC 晶片的硅端面 (Si 面) 上生长的石墨烯由于与 SiC 晶体的方位角取向一致,可以形成大域。与在相反 (碳) 面上生长的石墨烯相比,在 Si 面上,EG 还具有更可控的生长动力学。最近,通过优化
带宽需求持续增长 不断增长的带宽消耗需求继续对全球数据通信行业构成挑战。随着 400G 收发器出货量在 2021 年及以后大幅扩大,800G 光器件已计划在 2022 年上市。端口速度的加速周转以及链路预算的减少,导致半导体和光电子厂商不断面临压力,需要以极具竞争力的价格提供可靠的技术。在一个以成本和性能之间的平衡为主导的领域,光纤安装的质量至关重要。 链路余量可节省成本 从 100G 到 400G+ 生态系统的过渡带来了新的复杂性。现代数据通信光器件在设计上会产生高误码率,这意味着 FEC(前向纠错)编码方案对于维持稳定的连接必不可少 1 。由于 PAM4 等先进调制技术对光学元件性能提出了更严格的要求,光损耗预算也比以往任何时候都低。因此,网络运营商必须寻求高性能光纤解决方案,例如 Legrand Quantum 2 光纤解决方案,以尽可能多地利用光学余量。有了卓越的光纤基础设施,用户就可以寻求更经济高效的收发器来适应他们的网络环境。这为 DR-Lite 等性能轻松、价格具有竞争力的标准铺平了道路。优化网络支出确保高容量网络高效运行已经是一项昂贵而复杂的操作,更不用说链路故障的威胁了。大多数故障都与连接器端面和端口受污染、收发器激光性能下降或光纤弯曲/应力有关。前面提到的故障模式将受益于高性能光纤,因为这将延长链路寿命并减少昂贵的运营商故障单。因此,从运营和采购的角度来看,最大化光学性能裕度(光学余量)与优化总体成本之间存在不可避免的关联。
1。引入量子信号的独特特征,例如插入和叠加,使它们非常容易受到环境干扰的影响。因此,量子应用的成功取决于单光子的传输和操纵的可靠性。超低损耗光纤连接器在这种情况下起着关键作用,是量子设备之间的关键联系。标准连接器可能会引入重大损失,从而损害了量子通信的保真度。超低损耗连接器通过最大程度地减少信号降低并保持量子状态的完整性来应对这一挑战。2。量子光子量子应用中的光纤连接器需要组合精确的,耐用性和高性能在非常专业的条件下可靠地发挥功能。钻石的E-2000®和MiniAvim®连接器即使受到挑战性的环境因素,也是由于其出色的光学性能,鲁棒性和适应性的原因而脱颖而出。e-2000®特别以其集成的快门机械性而闻名,该机构可保护纤维末端面部免受污染和损害,从而确保随着时间的推移一致的性能。另一方面,MiniAvim®由于其紧凑,轻巧的设计与坚固的可靠性相结合而受到重视,使其成为挑战性环境条件(例如极端温度和振动)的首选连接器。3。在所有制造和组装过程中,必须测量这些参数并控制在控制之下。此外,Diamond的真空进料提供了在超高真空(UHV)和低温条件下运行的量子系统的关键界面解决方案。旨在实现跨真空屏障的预先和有效的光线传输,此进料可确保在将光学组件整合到量子环境中时,可确保最小的信号损失和最佳性能。Diamond的先进技术和工程确保这些解决方案满足量子研发的严格要求,提供无与伦比的可靠性和光学精确度。插入损失的原因只能通过控制多个参数,例如: - 套圈特性:直径,形式和精度孔直径和同心性来保证连接器的光学性能; - 抛光参数; - 端面瑕疵(划痕,凹坑和污染); - 纤维核的侧面和角度未对准。横向未对准是单模连接器中插入损失的最重要贡献者。纤维制造商通常会指出最大的核心对偏心。0.5微米和±1微米内的覆层直径精度。
近年来,超连续光源和各种新型光纤或波导的超高灵敏度得到了广泛的研究,结合光纤低损耗传输、抗电磁干扰等独特性能,发展了各种光子调制和集成的全光传感器件,为平面波导与光纤波导的集成提供了可能的技术途径( Kosiel et al.,2018 )。得益于新型智能材料、纳米加工技术和光谱分析技术的发展,人们开发了许多智能、高性能的光波导器件或光纤传感器,其中,智能聚合物、金属、金属氧化物和半导体材料已被用于制作光纤传感器或作为敏感材料,有效提高了灵敏度和选择性能( Yuan et al.,2019 )。这一改进是通过修改不同的光纤结构实现的,例如微光纤、纳米光纤、光纤尖端微/纳米结构、多模干涉光纤结构和直列光纤结构。微/纳米尺度的光纤传感器已经与微流控器件和平面光子结构集成以开发全光学芯片,从而实现传感信号的高速采集、传输和处理。由于光纤传感器被封装在柔性材料中,它们将成为可穿戴或植入式设备的有希望的候选者。将微/纳米纤维的优异性能(超高倏逝场)与这些传感器中使用的新型纳米材料(高比表面积和催化活性)相结合,开发出许多性能优异的集成光学传感器。在本研究主题中,报道了基于新型智能材料的光纤传感器的结构设计、器件制备和传感性能优化的模型模拟和实验研究的最新研究工作。光学微纳光纤和微纳结构的灵活设计与精确控制是发展先进光子器件和新型传感器的重要支撑,也被称作“光纤实验室”( Zhou et al., 2019 )。廖博士等在题为“双光子聚合诱导的光纤集成功能微纳结构”的论文中回顾和讨论了近10年来双光子聚合诱导的光纤集成微纳结构领域的研究进展。利用激光微加工、聚焦离子束铣削和纳米压印技术,在光纤端面制作出超小型、微型微光学元件、光波导器件和光学微腔,分辨率小于100纳米。将“双光子聚合”技术与新的加工方法或材料相结合,新的功能结构一直致力于开发新型纳米光子学设备,例如光纤实验室。