矩阵差异(或矩阵演算)被广泛接受为各种领域的必不可少的工具,包括估计理论,信号处理和机器学习。这也用于量子信息理论的许多领域(例如,量子断层扫描[1],[2],量子系统的最佳控制[3]以及对纠缠否定性[4])的最佳控制。矩阵差异提供了一种方便的方法,可以相对于独立变量的每个组件,收集因变量的每个组件的衍生物,在这种情况下,因变量和自变量可以是标量,矢量或矩阵。然而,通常的矩阵(或索引)符号通常会避免繁琐的计算和困难的最直观解释。已知可以在线性代数中成功应用使用字符串图的图表表示(请参见[5]及其中的参考文献)。在本文中,我们提供了一种简单的图解方法,用于得出有用的矩阵差异公式。请注意,可以分别代表量子状态和量子过程的半半数矩阵和完全正面的图被视为Hermitian矩阵的真实希尔伯特空间中的载体和矩阵。在这里我们提到了一些相关的工作。参考。[6],呈现图形表示DEL操作员(即∇)的方式,其中计算仅限于三维欧几里得空间的情况。参考文献[7]提出了一个图表,用于操纵张量导数相对于一个参数。我们采用了与这些参考文献中给出的相似的表示法。
摘要。Jacobi符号是诸如原始测试,整数分解和各种加密方案之类的加密应用中的基本原始符号。通过探索算法循环中模量减少之间的相互依赖性,我们开发了一种精致的方法,可显着提高计算效率。以Rust语言实施的我们的光学算法,其性能比传统的教科书方法增长了72%,并且是以前已知的Rust实现的两倍。这项工作不仅提供了对优化的详细分析,而且还包括全面的基准比较,以说明我们方法的实际优势。我们的算法根据开源许可公开获得,从而促进了基础加密优化的进一步研究。
ESSN 1872-7387 出版商:Elsevier 注意:这是作者在 Displays 上接受发表的作品版本。出版过程导致的更改(例如同行评审、编辑、更正、结构格式和其他质量控制机制)可能不会反映在本文档中。自提交出版以来,本作品可能已作出更改。最终版本随后发表于 Displays,61,(2020)DOI:10.1016/j.displa.2019.101932 © 2020,Elsevier。根据 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 许可 http://creativecommons.org/licenses/by-nc-nd/4.0/ 版权所有 © 和道德权利归作者和/或其他版权所有者所有。可以下载副本用于个人非商业研究或学习,无需事先许可或付费。未经版权所有者书面许可,不得复制或大量引用本项目。未经版权所有者正式许可,不得以任何方式更改内容或以任何格式或媒介进行商业销售。本文档是作者的印刷后版本,包含同行评审过程中商定的任何修订。已发布版本和此版本之间可能仍存在一些差异,如果您想引用已发布版本,建议您参考已发布版本。
摘要知识表示和推理的计算机科学领域(KRR)旨在像人类一样有效地理解,推理和解释知识。由于该领域的许多逻辑形式主义和推理方法已经表明了高阶学习的能力,例如抽象概念学习,将人工神经网络(ANN)与KRR方法集成到用于学习复杂和实用任务的KRR方法引起了很多关注。例如,神经张量网络(NTN)是神经网络模型,能够将符号表示为矢量空间,在这些模型中可以通过矩阵计算进行推理。当在逻辑张量网络(LTN)中使用时,它们能够将一阶逻辑符号(例如常数,事实和规则)嵌入到实值张量中。KRR和ANN的整合提出了将神经科学中的生物学灵感带入KRR的潜在途径。但是,高阶学习并不是人类大脑的独有性。昆虫,例如果蝇和蜜蜂,可以解决简单的关联学习任务,并学习抽象概念,例如“相同”和“差异”,这被视为高阶认知功能,通常被认为取决于自上而下的新皮层处理。用果蝇的实证研究强烈支持,即在昆虫大脑的嗅觉加工中使用了随机代表性结构。基于这些结果,我们提出了一个随机加权的特征网络(RWFN),该特征网络将随机绘制的未经训练的权重纳入编码器,该编码器使用适应性线性模型作为解码器。单个隐藏层神经网络在RWFN中模仿输入神经元和高阶处理中心之间的随机投影,该神经网络在RWFN中模仿,该神经网络使用kernel近似在输入之间更好地表示输入之间的复杂关系。由于这种特殊表示形式,RWFN可以通过仅训练线性解码器模型有效地学习输入之间的关系程度。我们将RWFN与LTN的性能进行比较,用于语义图像解释(SII)任务,这些任务被用作LTN如何利用一阶逻辑上的推理以超越仅数据驱动方法的性能的代表性示例。我们证明,与LTN相比,RWFN可以在对象分类和检测SII任务中对象之间的关系方面取得更好或类似的性能,同时使用更少的可学习参数(1:62比例)和更快的学习过程(1:2的运行速度比率)。此外,我们表明,由于随机权重不取决于数据,因此有几个解码器可以共享一个随机编码器,从而使RWFN具有独特的空间量表经济体,用于同时分类任务。
摘要知识表示和推理的计算机科学领域(KRR)旨在像人类一样有效地理解,推理和解释知识。由于该领域的许多逻辑形式主义和推理方法已经表明了高阶学习的能力,例如抽象概念学习,将人工神经网络(ANN)与KRR方法集成到用于学习复杂和实用任务的KRR方法引起了很多关注。例如,神经张量网络(NTN)是神经网络模型,能够将符号表示为矢量空间,在这些模型中可以通过矩阵计算进行推理。当在逻辑张量网络(LTN)中使用时,它们能够将一阶逻辑符号(例如常数,事实和规则)嵌入到实值张量中。KRR和ANN的整合提出了将神经科学中的生物学灵感带入KRR的潜在途径。但是,高阶学习并不是人类大脑的独有性。昆虫,例如果蝇和蜜蜂,可以解决简单的关联学习任务,并学习抽象概念,例如“相同”和“差异”,这被视为高阶认知功能,通常被认为取决于自上而下的新皮层处理。用果蝇的实证研究强烈支持,即在昆虫大脑的嗅觉加工中使用了随机代表性结构。基于这些结果,我们提出了一个随机加权的特征网络(RWFN),该特征网络将随机绘制的未经训练的权重纳入编码器,该编码器使用适应性线性模型作为解码器。单个隐藏层神经网络在RWFN中模仿输入神经元和高阶处理中心之间的随机投影,该神经网络在RWFN中模仿,该神经网络使用kernel近似在输入之间更好地表示输入之间的复杂关系。由于这种特殊表示形式,RWFN可以通过仅训练线性解码器模型有效地学习输入之间的关系程度。我们将RWFN与LTN的性能进行比较,用于语义图像解释(SII)任务,这些任务被用作LTN如何利用一阶逻辑上的推理以超越仅数据驱动方法的性能的代表性示例。我们证明,与LTN相比,RWFN可以在对象分类和检测SII任务中对象之间的关系方面取得更好或类似的性能,同时使用更少的可学习参数(1:62比例)和更快的学习过程(1:2的运行速度比率)。此外,我们表明,由于随机权重不取决于数据,因此有几个解码器可以共享一个随机编码器,从而使RWFN具有独特的空间量表经济体,用于同时分类任务。
基于符号的人工智能作者应非常感谢他们出色的评论文章(1)。他们明确地将“神经网络”描述为“人工智能(AI)的一种形式”。这是公众感知中主要的形式。由于这个原因,我希望将其描述为一种在医学领域具有巨大潜力的另一种AI形式。进一步到“神经网络”,还有“基于符号的AI”。在与机器学习的不同之中,在基于符号的AI中,知识是以分解器可以处理的明确形式进行转换的。没有发生生物神经元的模仿,也没有使用神经网络。相反,通过应用逻辑,规则和语义网络,知识可以解释为计算机。尤其是在临床决策支持系统的领域,基于符号的AI具有重要作用。现有规则 - 例如,从医疗指南中,可以将计算机解释并应用于具体患者。Lichtner等人的最新出版物。(2023)就是一个例子(2)。与神经网络相反,基于基于符号的AI的决策是可重复且透明的。与机器学习相吻合,这有助于其使用,尤其是在临床部门和至关重要的决策中。
我们修改了 R´enyi (1961) 熵公理,使其适用于负(“带符号”)测度,例如,在量子力学的相空间表示中。我们获得了有关系统的两个新信息(缺乏)测度,我们分别将其作为经典香农熵和经典 R´enyi 熵的带符号类似物。我们表明,带符号的 R´enyi 熵见证了系统的非经典性。具体而言,当且仅当带符号的 R´enyi α -熵对某个 α > 1 为负时,测度才具有至少一个负分量。相应的非经典性测试不适用于带符号的香农熵。接下来,我们表明,当 α 为偶数正整数时,带符号的 R´enyi α -熵是 Schur 凹的。(一个例子表明带符号的香农熵不是 Schur 凹的。)然后,我们为带符号测度建立了一个抽象的量子 H 定理。我们证明,在有符号测度的经典(“去相干”)演化下,参数化的有符号 R'enyi 熵家族的成员不减少,其中后者可以是 Wigner 函数或量子系统的其他相空间表示。(示例显示有符号 Shannon 熵可能是非单调的。)我们最终得出一个结论,即从有符号概率开始的相空间演化在有限的时间长度后何时变为经典。
本报告回顾了有关老年驾驶员信息处理能力和交通标志符号人为因素研究的文献。它描述了一系列研究、调查和实验室实验,这些研究、调查和实验室实验检查了美国《统一交通控制设备手册》(MUTCD)中的符号。首先,对手册中的所有符号进行了评估,以了解各个年龄段的驾驶员对符号的理解程度和白天可读性距离。然后,使用夜间可读性(有和无眩光)、反应时间、一瞥可读性和显眼性等指标对一组 18 个符号进行了评估。研究发现,老年驾驶员对符号的理解较差,可读性距离较短,一瞥可读性阈值、反应时间和显眼性搜索时间较高。研究发现,眩光只会降低老年驾驶员对标志的可读性。对其中 13 个符号进行修改和重新设计后,3 个符号的理解能力增强,11 个新设计的可读性提高。我们发现,为该项目开发的五种新符号的理解力和可读性与重新设计的符号相当。
摘要 面部情感识别受损在创伤性脑损伤 (TBI) 后很常见,并且与不良的社会结果有关。我们探讨了 TBI 后表情符号所描绘的情感感知是否也会受损。50 名 TBI 参与者和 50 名未受伤的同伴生成了自由文本标签来描述表情符号所描绘的情感,并在九点评定量表上评定他们的情感效价和唤醒水平。我们比较了两组的情感效价和唤醒评级如何聚类,并检查了参与者用来描述表情符号的词语的一致性。情感评级的层次聚类在未受伤组产生了四个表情符号簇,在 TBI 组产生了三个表情符号簇。未受伤组有一个强烈正面和一个中等正面的簇,而 TBI 组只有一个正情感效价簇,未按唤醒程度区分。尽管簇数量存在差异,但两组表情符号评级的层次结构显着相关。大多数表情符号与患有和未患有 TBI 的参与者用来描述它们的词语高度一致。患有 TBI 的参与者对表情符号的感知与未受伤的同龄人相似,使用相似的词语来描述表情符号,并在效价维度上对表情符号的评分也相似。患有 TBI 的个体对少数表情符号的感知唤醒差异很小。总体而言,结果表明,基本识别过程无法解释患有 TBI 的成年人报告的计算机介导通信中的挑战。检查患有 TBI 的人在上下文中对表情符号的感知是进一步了解脑损伤后在计算机介导环境中的功能性交流的重要下一步。
技术规格:文档中定义产品或服务特征的规格,例如质量水平,环境和气候绩效水平,所有需求的设计,包括残疾人的可访问性,评估产品性能,产品性能,产品的使用,产品,安全性或尺寸的使用,以及符号的测试和符号的测试,该方法符号和测试的方法是该方法,该方法符号为“符号”。包装,标记或标签,使用说明,供应或服务生命周期中每个阶段的生产过程和方法以及评估和整合程序;