从符号学的角度看待人类交流,可以将我们的视野扩展到口头语言之外,考虑其他符号系统和意义资源。这些包括手势、肢体语言、图像和声音。从这个角度来看,交流过程从个人的心理过程扩展到包括环境特征、交流发生的地点和空间。语言可能是通过数字网络进行调解的——而且今天这种情况越来越普遍。在线交流在几乎所有平台上都已成为多模式的。与此同时,移动设备已成为不可或缺的数字伴侣,扩展了我们的感知和认知能力。人工智能的进步使工具具有相当大的语言学习潜力,同时也使人类与物质世界的关系更加复杂。在本专栏中,我们将探讨随着移动、嵌入式、虚拟和现实增强技术在我们的生活中发挥着越来越重要的作用,对地点和空间在语言学习中的作用的看法的变化。 4E 认知和社会唯物主义等理论和框架有助于理解这种动态,它们假定人类认知/语言与我们周围的世界之间存在更紧密的联系。
[书名、编辑、印刷 ISBN 或在线 ISBN、页数、年份和 DOI 或 URL]。人们普遍认为,学习和推理对于实现真正的(人工智能)都至关重要 [1]。这也解释了为什么神经符号人工智能 (NeSy) [2、3、4、5](它将高级推理与低级感知相结合)的探索在研究议程中占据重要地位。推理的两个最突出的框架是逻辑和概率。</div>虽然在过去,它们是由人工智能领域的不同社区进行研究的,但大量研究人员一直致力于将它们整合,并旨在将概率与逻辑和统计学习结合起来;参见统计关系人工智能 (StarAI) [6、7] 和概率逻辑编程 [8] 领域。统计关系人工智能方法的推理能力与深度学习的强大模式识别能力相得益彰。通常,神经符号系统将逻辑与神经网络相结合。概率论已经与逻辑(参见统计关系人工智能)和神经网络相结合。因此,考虑逻辑、神经网络和概率的集成是有意义的。这有效地导致了概率逻辑与神经网络的集成,并开辟了新的能力。此外,尽管乍一看,包括
表现不佳。赠款接受者必须在整个三年的流行期间以季度报告其既定目标的进度。每个赠款接收者将符合各自的绩效目标。所有绩效计算均来自赠款收件人的实际成就与计划成果。这些性能范围通过颜色编码的符号系统反映在技术绩效报告(TPR)上,该系统标识了兽医确定的性能指标得分阈值;有关每个性能指标的最小阈值的详细信息和说明,请参见HVRP季度性能台指南。季度绩效报告为所有赠款接受者建立了绩效指标和通过/失败阈值。未能符合流行季度1到11中表1(下图)中提供的一个或多个性能指标,将需要在该季度的季度报告的叙述部分中限制上限。的性能不佳。因此,如果赠款收件人在第12季度未能通过绩效指标,则红色分数将出现在季度报告中(如表1所示),但是收件人不需要在该最终绩效报告中开发或修改上限。
当前的学习模型通常难以实现像人类一样的系统泛化,特别是在从有限的数据中学习组合规则并将它们推断为新的组合时。我们引入了神经符号递归机(NSR),其核心是根基符号系统(GSS),允许直接从训练数据中产生组合语法和语义。NSR采用模块化设计,集成了神经感知、句法分析和语义推理。这些组件通过一种新颖的演绎-溯因算法进行协同训练。我们的研究结果表明,NSR的设计充满了等变性和组合性的归纳偏差,使其具有良好的表现力,可以熟练地处理各种序列到序列任务并实现无与伦比的系统泛化。我们在四个旨在探测系统泛化能力的具有挑战性的基准上评估了NSR的有效性:用于语义分析的SCAN、用于字符串操作的PCFG、用于算术推理的HINT和组合机器翻译任务。结果证实了 NSR 在泛化和可转移性方面优于当代神经和混合模型。
阐明人工智能与建筑之间联系的关键在于逻辑学派。计算主义的发展与建筑结构主义思想的融合,导致了基于形式概念的类型学设计方法。自然语言作为符号系统的认知是在符号学中建立的,符号学是指对符号过程(符号学)的研究。任何形式的活动、行为或任何涉及符号的过程,包括意义的产生。查尔斯·桑德斯·皮尔斯的模型强调了表征与对象以及使用符号作为传输系统的解释者之间的关系。结构主义根植于三个主要领域:语言学、人类学和文学分析,旨在通过通用符号系统传递建筑思想。语言和语义的转变在 20 世纪 60 年代和 70 年代的建筑中得以实现,标志着从结构主义、理性主义到计算主义的道路。规则和形式(例如模型和方法)以不同的规模出现在建筑中。结构主义处理的是建筑规模,而 La Tendenza 则对更大的规模感兴趣,研究城市。如今,通过计算主义,它可以转变为更大的行星规模。
摘要。音乐和语言在结构上相似。这种结构相似性通常用生成过程来解释。本文描述了用于机器人技术中语言学习和符号出现的概率生成模型(PGM)的最新发展。机器人技术中的符号出现旨在开发一个可以适应现实世界环境和人类语言交流的机器人,并仅从感觉运动信息中获取语言(即,以一种不受监督的方式)。这被认为是符号出现系统的建设性方法。为此,已经开发了一系列的PGM,包括用于多种音素和单词发现,词汇获取,对象和空间概念形成以及符号系统的出现的PGM。通过扩展模型,符号出现系统包括一个多代理系统,其中出现符号系统的符号系统被揭示为使用PGMS建模。在此模型中,符号出现可以被视为具有共同的预测编码。本文通过结合“情感基于互感信号的预测编码”和“符号出现系统的预测编码”的理论来扩展这一想法,并描述了音乐中意义出现的可能假设。
摘要:为了解决氧化亚氮 (N2O) 排放量变化带来的不确定性,建模方法应运而生,成为研究两种排放过程(即硝化和反硝化)以及表征土壤、大气和作物之间相互关联动态的有效方法。本研究对广泛使用的在不同种植制度和管理措施下模拟氧化亚氮 (N2O) 的模型进行了全面概述。我们选择了基于过程的模型,优先考虑那些在近期发表的科学论文中已有完善算法记录或已发布源代码的模型。我们回顾并比较了用于模拟氧化亚氮 (N2O) 排放量的算法,并采用了统一的符号系统。选定的模型(APSIM、ARMOSA、CERES-EGC、CROPSYST、CoupModel、DAYCENT、DNDC、DSSAT、EPIC、SPACSYS 和 STICS)根据其硝化和反硝化过程建模方法进行分类,区分了对微生物库的隐式或显式考虑,并根据这些过程的主要环境驱动因素(土壤氮浓度、温度、湿度和酸度)的形式化进行分类。此外,还讨论了模型的设置和性能评估。通过对这些方法的评估,我们发现土壤化学-物理性质和气候条件是氮循环及其导致的气体排放的主要驱动因素。
3.1.2.3 添加了关于模拟交错的注释 3.1.2.4 添加了其他数字输出选项 3.1.2.6 删除了缩放增量/减量离散选项并添加了 (4) 个新的离散选项 3.1.2.7 60Hz/50Hz 模式下可用的外部同步 3.2.2 包含 640、60Hz 帧速率 3.3.1.1 添加了关于符号的飞溅依赖性的注释 3.3.2.1 添加了可变 FFC 帧号功能 3.3.2.2 添加了无快门增益模式切换功能 3.3.2.5 更新了 DDE 的图像和注释 3.3.2.6 添加了新的平台均衡功能 ACE、SSO 和尾部抑制 3.3.2.6.1 更新了当前版本和过去版本的 IIR 滤波器参数含义,并重命名为 AGC 滤波器以与 SW IDD 对齐 3.3.2.6.2 添加了新的基于信息的算法描述 3.3.2.6.2 更新了尾部拒绝的线性直方图 3.3.2.7.1 YCbYCr 输出添加 3.3.2.8 添加了用户可在模拟和数字中选择的符号系统 3.3.2.10/11 删除了对配置的校准依赖 3.3.2.12 添加了 SSN 功能 3.3.3.1 添加了饱和阈值的等温线 3.3.4.5 添加了状态标志部分 3.5.1 更新了可靠性规范
3.1.2.3 添加了关于模拟交错的注释 3.1.2.4 添加了其他数字输出选项 3.1.2.6 删除了缩放增量/减量离散选项并添加了 (4) 个新的离散选项 3.1.2.7 60Hz/50Hz 模式下可用的外部同步 3.2.2 包含 640、60Hz 帧速率 3.3.1.1 添加了关于符号的飞溅依赖性的注释 3.3.2.1 添加了可变 FFC 帧号功能 3.3.2.2 添加了无快门增益模式切换功能 3.3.2.5 更新了 DDE 的图像和注释 3.3.2.6 添加了新的平台均衡功能 ACE、SSO 和尾部抑制 3.3.2.6.1 更新了当前版本和过去版本的 IIR 滤波器参数含义,并重命名为 AGC 滤波器以与 SW IDD 对齐 3.3.2.6.2 添加了新的基于信息的算法描述 3.3.2.6.2 更新了尾部拒绝的线性直方图 3.3.2.7.1 YCbYCr 输出添加 3.3.2.8 添加了用户可在模拟和数字中选择的符号系统 3.3.2.10/11 删除了对配置的校准依赖 3.3.2.12 添加了 SSN 功能 3.3.3.1 添加了饱和阈值的等温线 3.3.4.5 添加了状态标志部分 3.5.1 更新了可靠性规范
3.1.2.3 添加了关于模拟交错的注释 3.1.2.4 添加了其他数字输出选项 3.1.2.6 删除了缩放增量/减量离散选项并添加了 (4) 个新的离散选项 3.1.2.7 60Hz/50Hz 模式下可用的外部同步 3.2.2 包含 640、60Hz 帧速率 3.3.1.1 添加了关于符号的飞溅依赖性的注释 3.3.2.1 添加了可变 FFC 帧号功能 3.3.2.2 添加了无快门增益模式切换功能 3.3.2.5 更新了 DDE 的图像和注释 3.3.2.6 添加了新的平台均衡功能 ACE、SSO 和尾部抑制 3.3.2.6.1 更新了当前版本和过去版本的 IIR 滤波器参数含义,并重命名为 AGC 滤波器以与 SW IDD 对齐 3.3.2.6.2 添加了新的基于信息的算法描述 3.3.2.6.2 更新了尾部拒绝的线性直方图 3.3.2.7.1 YCbYCr 输出添加 3.3.2.8 添加了用户可在模拟和数字中选择的符号系统 3.3.2.10/11 删除了对配置的校准依赖 3.3.2.12 添加了 SSN 功能 3.3.3.1 添加了饱和阈值的等温线 3.3.4.5 添加了状态标志部分 3.5.1 更新了可靠性规范