摘要:在下一个未来,我们将在日常生活中包围着许多相对便宜的计算设备,配备了无线通信和感应,并以“ Pervasive Intelligence”的概念为基础,在这些基础上,我们可以从这些基础上设想出我们的未来世界作为所有事物的Internet(Iot/IoE)(Iot/IOE)(Iot/IOE),而消费者/IOT/IOT/IOE IOT/IOE IOE和ioe ioe and Industrial and Industrial Iot and ioe and iotial iot iot iot iot iot。实际上,物联网是具有无限应用潜力的技术范式,它越来越成为能够提高企业竞争力,公共行政部门效率和生活质量的现实。在过去的几年中,已经开发了许多IOT启发的系统,并且应用领域已经扩展和深刻发展:智能家居,智能建筑,智能计量,智能工厂,智能汽车,智能汽车,智能环境,智能农业,智能农业,智能农业,智能物流,智能物流,生命环保,智慧零售和智能健康。物联网无线传感器节点的关键所需特征之一是它可以自主从能量收集(EH)进行自主操作的能力,而不是依靠寿命有限的笨重电池。此外,对于许多上述场景,可以预见可穿戴的解决方案,以进一步增加物联网范式的普遍扩散,从而使许多设备和个人相互连接。成功开发成功的RF自主系统(可能可穿戴)的关键字如下:
摘要:通过波前传感对纯相对象的可视化具有重要的应用,从表面效果到生物医学显微镜,通常需要涉及光空间过滤,干涉测量法或结构化照明的笨重且复杂的设置。在这里,我们引入了一种新型的图像传感器,该传感器对光传播的局部方向具有独特的敏感性,基于涂有特殊设计的等离子跨表面的标准光电探测器,从而产生了对表面正常围绕入射角的不对称响应性的不对称依赖性。使用模拟光电传动探测器平台证明了元表面设计,制造和角度敏感的操作。测量结果,结合计算成像计算,然后用来表明基于这些跨表面像素的标准摄像头或微观范围可以直接访问相位对象,而无需任何其他光学元素,而最先进的最小可检测到的最小可检测相的相比是10 mrad。此外,在同一像素阵列上具有相等和相反角度响应的传感器的组合可用于在单个镜头中执行定量相成像,并具有定制的重建算法,该算法也在这项工作中也开发。凭借其系统的微型化和测量简化,这些设备启用的相成像方法对于涉及涉及空间约束和便携式设置的应用尤其重要(例如,现场的想象和内镜和内镜)和涉及自由移动对象的测量值。
项目描述当前的商业上可用机器人支气管镜系统需要由一支高技能运营商的团队(包括顾问,注册服务商和受过训练的护理人员)操作。这是因为系统需要实时临床医生控制,以引导支气管镜通过肺部到达所需的位置。此外,这些系统昂贵,笨重,需要同时进行成像以优化诊断产量。这些因素的组合导致迄今为止技术的采用有限。同时,对这种技术以改善肺癌诊断的需求迅速增加。肺癌是英国癌症死亡的最常见原因:每年有43,000多人被诊断出患有该疾病,其中大多数在III期或IV期。当前的5年生存率分别为在第三阶段或IV阶段诊断的患者为15%和5%。如果可以较早诊断出肺癌,则可以大大降低死亡率;最早的疾病的5年生存率高达92%。但是,要活检并有可能治疗这些早期结节,需要下一代技术来可靠地到达结节位点并成功进行活检。最近的技术发展为完全自动化的支气管镜工具提供了机会,并保证了系统稳定性,精确定位到当前难以到达的区域,并可靠地从小结节中获取活检样品。此工具将利用新型的软机器人技术,包括连续机器人,以及它们独特的灵活结构,可以穿越天然
摘要:在下一个未来,我们将在日常生活中包围着许多相对便宜的计算设备,配备了无线通信和感应,并以“ Pervasive Intelligence”的概念为基础,在这些基础上,我们可以从这些基础上设想出我们的未来世界作为所有事物的Internet(Iot/IoE)(Iot/IOE)(Iot/IOE),而消费者/IOT/IOT/IOE IOT/IOE IOE和ioe ioe and Industrial and Industrial Iot and ioe and iotial iot iot iot iot iot。实际上,物联网是具有无限应用潜力的技术范式,它越来越成为能够提高企业竞争力,公共行政部门效率和生活质量的现实。在过去的几年中,已经开发了许多IOT启发的系统,并且应用领域已经扩展和深刻发展:智能家居,智能建筑,智能计量,智能工厂,智能汽车,智能汽车,智能环境,智能农业,智能农业,智能农业,智能物流,智能物流,生命环保,智慧零售和智能健康。物联网无线传感器节点的关键所需特征之一是它可以自主从能量收集(EH)进行自主操作的能力,而不是依靠寿命有限的笨重电池。此外,对于许多上述场景,可以预见可穿戴的解决方案,以进一步增加物联网范式的普遍扩散,从而使许多设备和个人相互连接。成功开发成功的RF自主系统(可能可穿戴)的关键字如下:
b 弗吉尼亚大学生物医学工程系,本科摘要聚焦超声 (FUS) 是一种新兴的非侵入性技术,为治疗多种神经系统疾病(如特发性震颤和多形性胶质母细胞瘤 (GBM))提供了一种替代方法。FUS 已被证明可以以安全和有针对性的方式破坏 BBB,然而,用于该过程的头部固定装置最初是为放射外科设计的。为此,研究小组提议开发一种用于 FUS 应用的新型头架。该设计的创建基于以下重要的总体目标:1) 减少设计笨重以最大限度地减少图像失真,2) 增加 BBBO 治疗范围,3) 最大限度地提高患者的舒适度。使用计算机辅助设计 (CAD) 软件 Fusion 360 创建设计迭代,然后 3D 打印并组装最终设计以创建原型。使用 Fusion 360 对框架进行有限元分析 (FEA),以确定安全系数和在变形前可施加到设备前部旋转旋转螺钉上的最大力。对新型头架原型进行了静态应力有限元分析,平均固定扭矩为 0.348 Nm,最大固定扭矩为 0.522 Nm。结果显示,最大力为 273.1 MPa,安全系数为 1.0,最大力为 409.7 MPa,安全系数为 0.67。关键词:FUS、BBBO、GBM、立体定向头架、FEA
转录 - 耦合的核苷酸切除修复(TC -NER)是一种高度保守的DNA修复途径,可去除转录基因组中的笨重病变。Cockayne综合征B蛋白(CSB)或其酵母直系同源物RAD26以DEC的闻名,可以在病变中起重要作用 - TC -NER的识别步骤。最近将另一种保守的蛋白质ELOF1或其酵母直系同源物ELF1鉴定为核心转录 - 耦合修复因子。RAD26如何区分RNA聚合酶II(POL II)在DNA病变或其他障碍物处停滞不前,以及ELF1在此过程中的作用何种作用仍然未知。在这里,我们提出了Pol II -Rad26复合物的冷冻结构,该结构停滞在不同的障碍物处,表明Rad26使用一种共同的机制来识别停滞的Pol II,当Pol II在病变处逮捕时,其他相互作用进行了其他相互作用。病变的冷冻 - EM结构 - 被捕的Pol II -RAD26与ELF1结合的rad26表明ELF1诱导了Rad26和病变之间的进一步相互作用 - 被捕的Pol II。生化和遗传数据支持TC -NER启动中ELF1和RAD26之间相互作用的重要性。一起,我们的结果提供了重要的机理见解,即如何在初始病变识别步骤的转录识别步骤 - 耦合修复的初始病变识别步骤中一起工作。
颅内压 (ICP) 升高通常在多种情况下进行筛查,包括脑积水、假性脑瘤和创伤 [1]。测量 ICP 的标准实践包括腰椎穿刺,通过压力计测量脑脊液开放压力,或通过应变计传感的外部脑室引流盐水柱的直接颅内接口测量脑脊液开放压力 [2]。这显然是侵入性的,而且往往会让患者感到不舒服。需要常规 ICP 监测的患者必须定期忍受这一过程 [3]。显然需要一种微创或非侵入性技术来筛查 ICP 升高 [4]。许多研究试图开发非侵入性方法来识别 ICP 升高,例如经眼超声、颈动脉多普勒和耳蜗导水管传输 [2,5,6]。然而,到目前为止,还没有一种被证明足够可靠以用于临床实践 [2,4- 7]。一种有趣的技术是利用鼓膜搏动来推导 ICP [8,9] 。该技术最早在 20 世纪 70 年代被描述,利用了脑脊液 (CSF) 和中耳之间通过耳蜗导水管 [10] 的已知通道。许多研究表明,这种连接可以将心脏搏动波形 (ICP 波形) 传输到鼓膜 (TM),并可以从 TM 搏动中推导 ICP 波形 [10-14] 。尽管之前的测试已经能够推导这种波形,但耳蜗导水管多变的声学特性往往使得经典的 ICP 波形指标(如振幅和时间平均值)不可靠 [2,15] 。这种限制,加上最初检测这些波形所需的笨重而复杂的设备,使得这种
摘要 — 目的:传感器小型化和计算能力的进步为在现实场景中监测人类生理状况提供了支持技术。睡眠中断可能会影响神经功能,也可能是身体和精神疾病的症状。本研究提出使用可穿戴入耳式脑电图 (ear-EEG) 进行整夜睡眠监测,作为一种 24/7 连续、不引人注目的社区睡眠质量评估技术。方法:共有 22 名健康参与者参加了整夜睡眠监测,同时进行耳部脑电图和常规全多导睡眠图记录。在结构复杂性和频谱域中分析了耳部脑电图数据。提取的特征用于通过监督机器学习自动预测睡眠阶段,其中 PSG 数据由睡眠临床医生手动评分。结果:基于单个入耳式传感器的耳部脑电图自动预测睡眠阶段与基于完整 PSG 的睡眠图之间的一致性在五个睡眠阶段分类的准确度上为 74.1%。这得到了 kappa 度量 (0.61) 的高度一致性的支持。结论:入耳式传感器可用于在睡眠实验室外监测整夜睡眠,还可减轻与 PSG 相关的技术困难。因此,它代表了一种 24/7 连续可穿戴的替代品,可以替代传统笨重且昂贵的睡眠监测。意义:“标准化”的通用粘弹性入耳式传感器是监测睡眠的下一代解决方案——该技术有望成为一种可行的可随时穿戴的睡眠监测方法,是实现负担得起的医疗保健和未来电子健康的关键。
绩效衡量标准 允许 不允许 N/A 1. 在整个伪装行动中应用伪装原则。 a. 采用逼真的伪装。 b. 应用伪装运动技术。 c. 打破常规形状。 d. 通过遮盖或移除可能反射光线的物品来减少可能的反光。 e. 与周围环境混合颜色,或至少确保颜色与背景不形成对比。 f. 采用噪音控制。 2. 伪装您暴露的皮肤。 a. 使用油漆棒遮盖皮肤油脂,即使您的皮肤很黑。 b. 在脸上涂漆时使用表格 052-COM-1361-1 中的颜色图表。 c. 用深色涂高、有光泽的区域(前额、颧骨、鼻子、耳朵、下巴)。 d. 用浅色涂低、阴影区域(眼睛周围、鼻子下方和下巴下方)。在颈后、手臂和手部裸露的皮肤上涂上不规则的图案。 3. 伪装您的制服和头盔。 a. 卷起您的袖子并扣上所有纽扣。 b. 将树叶、草、小树枝或 LCSS 碎片贴在您的制服和头盔上。 c. 穿着未上浆的 ACU。 d. 更换过度褪色和磨损的 ACU,因为伪装效果已丧失。 4. 伪装您的个人装备。 a. 遮盖或移除闪亮的物品。 b. 固定移动或佩戴时会发出嘎嘎声或噪音的物品。 c. 使用天然物品和/或 LCSS 破坏大型和笨重装备的形状。 5. 维护伪装。 a. 当天然伪装失效并失去效力时更换它。 b. 当伪装褪色时更换它。 c. 更换伪装以适应不断变化的环境。
摘要:足底压力在糖尿病和外周多神经病患者的足部溃疡发病机理中起着至关重要的作用。压力缓解是预防和治疗足底溃疡的关键要求。常规医学实践通常通过专用的鞋垫和特殊的鞋类实现这种行动。可以通过感测/估计当前状态(压力)来实现脚压力卸载的另一种技术(不在医疗实践中),并且一旦达到定义的阈值,就可以启用压力释放机制。尽管这些机制可以使足底压力监测和释放成为可能,但总体而言,它们使鞋子变得更加笨重,依赖和昂贵。在这项工作中,我们提出了一种被动和自身的替代方案,以将足底压力保持在定义的安全限制内。我们的方法基于使用永久磁铁的使用,利用其非线性场降低距离。所提出的解决方案无电子设备,是智能鞋开发的低成本替代品。设备的整体尺寸为13毫米,高度为30毫米。该设备允许阈值压力极限的可调节性超过20倍,这使得可以将极限预先设置为低至38 kPa且高至778 kPa,从而导致可调性在较大范围内。作为一种被动,可靠和低成本的替代方案,该提议的解决方案可能在智能鞋的开发中有用,以防止足部溃疡的发育。所提出的设备为卸载足底压力提供了替代方案,该压力没有动力进料要求。提出的研究为开发完整的卸载鞋提供了初步结果,该鞋子可能可用于预防/护理糖尿病患者的步道溃疡。