附图清单编号图纸名称 项目方向 G-001 标题页 G-002 无障碍设施详情 G-101 一楼安全规划图 G-102 二楼安全规划图 土木工程 C-1 封面页 C-2 现有地形/拆除规划图 C-3 场地/公用设施规划图 C-4 坡度/侵蚀控制规划图 C-5 场地详情 AS-101 建筑场地规划图 AS-102 场地物流规划图 AS-103 场地详情 L-101 景观规划图 建筑 D-101 演示规划图 A-101 一楼规划图 A-102 二楼规划图 A-103 放大 RR细节 A-104 楼梯和电梯细节 A-105 放大的剧院细节 A-106 放大的剧院细节 A-107 放大的平面细节 A-111 完成平面图 A-121 一楼反射天花板平面图 A-122 二楼反射天花板平面图 A-131 屋顶平面图 A-201 外部立面图 A-202 外部立面图 A-204 玻璃立面图 A-301 建筑剖面图 A-311 墙壁剖面图 A-321 外部细节 A-401 内部立面图 A-402 内部立面图 A-403 内部立面图 A-404 室内立面图 A-405 室内立面图 A-421 室内细节 A-422 室内细节 A-423 室内细节 A-424 室内细节 A-425 室内细节 A-601 进度表和细节 A-602 完成进度表 A-603 门进度表和细节 A-604 门细节 A-605 墙壁细节 A-901 建筑规格 A-902 建筑规格 A-903 建筑规格 A-904 建筑规格 A-905 建筑规格 A-906 建筑规格 A-907 建筑规格 A-908 建筑规格 结构 S-101 基础平面图 S-201 座位框架平面图 S-202 二楼框架平面图 S-203 屋顶框架平面图 S-301 基础剖面 S-401 框架剖面 S-402 屋顶框架剖面 S-501 一般说明和规格 S-502 一般说明和规格 舞台照明 TL-1 舞台照明系统 TL-2 物料清单 AV AV-101 AV 设计 AV-102 AV 设计AV-201 AV 设计部分 AV-401 板详细信息 AV-402 AV 设备列表 AV-403 AV 规格 电气 E-0.0 一般电气 E-1.1 电源平面图 - 主层 E-1.2 电源平面图 - 第二层 E-2.1 照明平面图 - 主层 E-2.2 照明平面图 - 第二层 E-3.1 舞台照明平面图 E-3.2 电气详细信息 E-4.1 电气计划和详细信息 E-4.2 面板计划 机械 M-0.0 一般机械 M-1.1 机械平面图 - 主层 M-1.2 机械平面图 - 第二层楼层 M-1.3 机械平面图 - 屋顶层 M-4.1 机械明细表 M-4.2 机械细节 M-5.1 HVAC 控制 M-5.2 HVAC 控制 管道 P-0.0 一般管道 P-1.0 管道平面图 - 地下 P-1.1 管道平面图 - 主楼层 P-1.2 管道平面图 - 第二楼层 P-1.3 管道平面图 - 屋顶层 P-3.1 管道平面图 - 管道等距图 P-3.2 管道等距图 P-4.1 管道平面图 - 管道明细表和细节 P-4.2 管道细节
附图清单编号图纸名称 项目方向 G-001 标题页 G-002 无障碍设施详情 G-101 一楼安全规划图 G-102 二楼安全规划图 土木工程 C-1 封面页 C-2 现有地形/拆除规划图 C-3 场地/公用设施规划图 C-4 坡度/侵蚀控制规划图 C-5 场地详情 AS-101 建筑场地规划图 AS-102 场地物流规划图 AS-103 场地详情 L-101 景观规划图 建筑 D-101 演示规划图 A-101 一楼规划图 A-102 二楼规划图 A-103 放大 RR细节 A-104 楼梯和电梯细节 A-105 放大的剧院细节 A-106 放大的剧院细节 A-107 放大的平面细节 A-111 完成平面图 A-121 一楼反射天花板平面图 A-122 二楼反射天花板平面图 A-131 屋顶平面图 A-201 外部立面图 A-202 外部立面图 A-204 玻璃立面图 A-301 建筑剖面图 A-311 墙壁剖面图 A-321 外部细节 A-401 内部立面图 A-402 内部立面图 A-403 内部立面图 A-404 室内立面图 A-405 室内立面图 A-421 室内细节 A-422 室内细节 A-423 室内细节 A-424 室内细节 A-425 室内细节 A-601 进度表和细节 A-602 完成进度表 A-603 门进度表和细节 A-604 门细节 A-605 墙壁细节 A-901 建筑规格 A-902 建筑规格 A-903 建筑规格 A-904 建筑规格 A-905 建筑规格 A-906 建筑规格 A-907 建筑规格 A-908 建筑规格 结构 S-101 基础平面图 S-201 座位框架平面图 S-202 二楼框架平面图 S-203 屋顶框架平面图 S-301 基础剖面 S-401 框架剖面 S-402 屋顶框架剖面 S-501 一般说明和规格 S-502 一般说明和规格 舞台照明 TL-1 舞台照明系统 TL-2 物料清单 AV AV-101 AV 设计 AV-102 AV 设计AV-201 AV 设计部分 AV-401 板详细信息 AV-402 AV 设备列表 AV-403 AV 规格 电气 E-0.0 一般电气 E-1.1 电源平面图 - 主层 E-1.2 电源平面图 - 第二层 E-2.1 照明平面图 - 主层 E-2.2 照明平面图 - 第二层 E-3.1 舞台照明平面图 E-3.2 电气详细信息 E-4.1 电气计划和详细信息 E-4.2 面板计划 机械 M-0.0 一般机械 M-1.1 机械平面图 - 主层 M-1.2 机械平面图 - 第二层楼层 M-1.3 机械平面图 - 屋顶层 M-4.1 机械明细表 M-4.2 机械细节 M-5.1 HVAC 控制 M-5.2 HVAC 控制 管道 P-0.0 一般管道 P-1.0 管道平面图 - 地下 P-1.1 管道平面图 - 主楼层 P-1.2 管道平面图 - 第二楼层 P-1.3 管道平面图 - 屋顶层 P-3.1 管道平面图 - 管道等距图 P-3.2 管道等距图 P-4.1 管道平面图 - 管道明细表和细节 P-4.2 管道细节
摘要:能源社区 (EC) 正在成为促进欧洲能源转型的主要驱动力,每个成员国 (MS) 采用的监管框架对于 EC 的成功部署都发挥着关键作用。因此,本文分为两个层次。本文的第一层讨论了成员国目前对 EC 的规定,对所使用的每种解决方案进行了关键比较。第二层研究涉及引入混合整数线性规划 (MILP) 优化算法,该算法早期由一些作者研究过,并进一步开发用于评估有利于产消者参与 EC 的条件。这两个模型都已在位于意大利北部马利亚诺阿尔皮市的案例研究中进行了测试。结果表明,所提出的方法正确评估了影响公民参与 EC 的关键参数,并表明对于所研究的意大利 EC,有可能进一步扩大安装容量而不会损害投资盈利能力。
摘要:能源社区 (EC) 正在成为促进欧洲能源转型的主要驱动力,每个成员国 (MS) 采用的监管框架对于 EC 的成功部署都发挥着关键作用。因此,本文分为两个层次。本文的第一层讨论了成员国目前对 EC 的规定,并对所使用的每种解决方案进行了关键比较。第二层研究涉及引入混合整数线性规划 (MILP) 优化算法,该算法早期由一些作者研究,并进一步开发以评估有利于产消者参与 EC 的条件。这两个模型都已在位于意大利北部马利亚诺阿尔皮市的案例研究中进行了测试。结果表明,所提出的方法正确评估了影响公民参与 EC 的关键参数,并表明对于所研究的意大利 EC,有可能进一步扩大安装容量而不会损害投资的盈利能力。
1.0高管摘要1.1申请申请授予“ 1NO转换”的完整计划许可。公平的8床(8人)HMO,包括向地面和第二层的扩展。1.2该申请已提交给会员,因为Cllr Russ McPherson召集了申请,并且有陈述与官员建议冲突,而计划条件无法克服。1.3官员考虑了对邻居和周边地区的影响。在额外忽视方面,关于邻居便利的问题很小。该网站位于高度可持续的位置,可访问可以支持无汽车开发的行人,自行车路线和公共交通工具。它位于樱桃欣顿区中心,在底楼鼓励商业用途。1.4在可持续地点,在HMO中提供额外的两床空间的好处得到了官员的支持。1.5官员建议计划委员会(插入建议)2.0站点说明和上下文
rial安排。第一个排列由十层碳纤维组成,而第二层由十层佩隆纤维组成。假肢是为20岁的女性患者设计的,身高155厘米,重75千克。机械性能分析表明,第2组(Perlon)(Perlon)的最终拉伸强度(Eult)分别为145 MPa和137 MPa,而对于第1组(碳纤维),它们为285 MPA和280 MPA。第2组的疲劳极限为145 MPa,而第1组的疲劳极限为78 MPa。使用四个区域的F射存:前(495 kPa),侧面(427 kPa),后部(384 kPa)和内侧(351 kPa)测量了树桩上的界面压力。使用ANSYS 14.5软件,确定了疲劳安全系数,第1组(碳纤维)显示1.2的安全系数为1.2,这被认为是适合设计目的的,而第2组(Perlon)的安全系数为0.096,表明失败。
机器学习(ML)模型在推进脑部计算机界面(BCI)信号处理以及增强物联网(IoT)移动设备的功能方面表现出了巨大的希望。通过将这些进步结合到全面的医疗保健监测和通信系统中,我们可能会显着改善锁定综合症患者的生活质量。为此,我们使用已知的ML模型提出了一种三层系统设计方法:数据收集,部署在物联网硬件上的本地集成系统以及管理管理。第一层重点是物联网传感器和大脑信号的非侵入性记录,它们的校准和数据收集以及数据处理。第二层侧重于汇总和指导数据,护理人员的警报系统以及用于个性化沟通的BCI。最后一级专注于问责制和基本管理工具。这项进行研究的研究证明了整合当前技术以改善对锁定患者的护理的可行性。
我们研究在图表上发挥的无限持续时间的确定性游戏,并专注于定量目标的策略复杂性。此类游戏众所周知,可以在有限图上接受最佳的无内存策略,但通常需要无限图表的无限内存策略。,我们为无限图的平均值和总收益目标的策略复杂性提供了新的下层和上限,重点是在阶梯式策略(有时称为马尔可夫策略)是否足以实施获胜策略。尤其是,我们表明,在有限的分支领域,Lim SUP Mean-Payoff的三种变体和总计目标允许取胜策略,这些策略要么基于步骤计数器或步骤计数器以及额外的内存。相反,我们表明,对于某些Lim Inf总计目标,诉诸步骤计数器的策略和有限的内存还不够。对于步骤持续策略,这将所有经典定量目标的情况都定为Borel层次结构的第二层。
摘要:本文提出了一种增量反步滑模(IBS)控制器,用于无尾飞机的轨迹控制,该控制器具有未知干扰和模型不确定性。所提出的控制器基于无尾飞机的非线性动力学模型。提出了一种限制虚拟控制输入速率和幅度的稳定性增强器(SE)。稳定性增强器由两层组成。当虚拟控制输入接近边缘时,将激活第一层 SE 来修改轨迹跟踪误差;当虚拟控制输入超出边缘时,第二层 SE 将降低控制增益以确保虚拟控制输入尽快落在边缘内。在 SE 的帮助下,增量控制方法可以扩展到外环控制,而无需考虑内环系统的动态特性。此外,提出了一种状态导数自适应估计器,与 IBS 相结合,使控制器表现出良好的鲁棒性。最后,给出了两个仿真。第一次仿真表明系统对外部干扰和模型不确定性不敏感,第二次仿真证明了 SE 的有效性。
产生癫痫发作的耐用易感性。这些癫痫发作是由于异常过度或同步神经元活性而引起的体征和症状的短暂出现[1]。根据国际反对癫痫联盟(ILAE),癫痫症可以分为不同的多层次类型[2]。第一级代表癫痫发作类型:焦点,广义和未知癫痫发作[3];第二层包括癫痫类型:焦点,广义,合并的局灶性和焦点,未知;为了诊断普通癫痫的诊断,癫痫患者应显示全部或更大的大脑的异常电体征,包括两个半球。相反,局灶性癫痫的诊断需要在一个特定的大脑区域中存在异常的电体征,通常仅限于一个半球[2]。最后一个级别涉及癫痫综合征,它是指倾向于一起出现的一系列特征(癫痫发作类型和诊断技术)(见图1)[2]。