(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2024 年 12 月 30 日发布。;https://doi.org/10.1101/2024.12.30.630761 doi:bioRxiv preprint
- 自然资源稀缺 - 可用土地较少,占全国总面积不到 30% - 人口密度高,每平方公里 516 人,仅韩国就有 5200 万人。 - 制造业占国民生产总值的比重较大,为 28.8%。 - 因此,研发是韩国工业生产的关键支撑
生物乙醇是一种可再生,可持续的燃料,它来自诸如植物之类的生物来源,主要是通过在甘蔗,玉米,小麦和其他生物质材料等农作物中发现的糖发酵。生物乙醇为常规化石燃料提供了有希望的替代品,有助于减少温室气体排放并减少对不可再生能源的依赖。可以将生物乙醇与汽油混合以燃烧发动机,也可以以纯形式用于能量产生。它代表着向更绿色能源解决方案过渡的关键组成部分,与全球打击气候变化和促进可持续发展的努力保持一致[1]。生物乙醇的好处范围超出了环境方面。它也刺激了农村
非小细胞肺癌(NSCLC)中表皮生长因子受体(EGFR)突变是最常见的驱动突变之一,尤其在某些人群中,例如亚洲患者和非吸烟者。外显子19的缺失和外显子21的L858R点突变是最常见的异常,两者合计占所有EGFR突变的80%以上(1)。在过去的二十年里,靶向治疗的出现深刻改变了晚期驱动基因阳性NSCLC患者的治疗策略。作为NSCLC的重要治疗靶点,EGFR酪氨酸激酶抑制剂(EGFR-TKI)彻底改写了EGFR突变型NSCLC患者的诊断和治疗(2)。与传统化疗相比,第一代(如吉非替尼和厄洛替尼)和第二代(如阿法替尼)EGFR-TKI已显示出更高的反应率和无进展生存期(PFS)。第三代 EGFR-TKI(如奥希替尼)的开发主要是为了克服由于 T790M 耐药突变而对早期 EGFR-TKI 产生的获得性耐药性,这是对早期 EGFR-TKI 产生耐药性的常见机制 (3)。奥希替尼还显示出作为 EGFR 突变 NSCLC 患者的一线治疗药物的疗效,因为它能够靶向常见的激活性 EGFR 突变和 T790M
从根本上讲,英特尔主张内置的加速能力可以有效地提高CPU核心计数和复杂性的性能。从我们看来,英特尔已经证明了前一代Xeon可伸缩处理器在特定的现实世界中每瓦提供突破性的性能,已经具有广泛的可信度。因此,客户和用户获得了更有效的CPU使用,减少功耗和提高投资回报率的范围。总的来说,英特尔通过英特尔内置加速器创新,英特尔正在重新定义竞争格局,以使内置加速能力和每核绩效在数据中心和云环境中最高的选择标准。
在本设计测试中,我们使用 BERT-Large 无大小写(全词掩码)预训练模型作为模型检查点。该模型包含 3.4 亿个参数。我们使用斯坦福问答数据集 (SQuAD) v1.1 数据集进行微调分析。用例要求按照英特尔架构 Model Zoo 在线存储库文档 中所述执行。为了展示使用可扩展端到端企业 AI 堆栈解决方案进行 BERT-Large 微调的性能和可扩展性,我们使用了潜在的英特尔优化,例如针对 oneDNN 优化的 TensorFlow 和用于分布式训练的 Horovod。Horovod 与英特尔® MPI 库 一起部署,进一步利用了英特尔在 MPI 层的优化。我们使用容器映像和一组 MPIJob 规范文件在 Kubeflow 的训练运算符上运行 BERT-Large 工作负载。
au:PleaseconfirmthatalleadinglevelsarreepressedCorrected:人口稳定增长和生活水平的提高,增强了全球对能源的需求。化石燃料占能源生产的四分之三以上,释放了大量的二氧化碳(CO 2),这些二氧化碳(CO 2)驱动气候变化的影响,并在许多国家造成严重的空气污染。因此,CO 2排放量的急剧减少,尤其是化石燃料,对于应对人为气候变化至关重要。为了减少CO 2排放并应付对能源的不断增长的需求,必须开发可再生能源,其中生物燃料将形成重要的贡献。在本文中,从第一到第四代液体生物燃料以及其工业发展和政策含义进行了详细讨论,重点是运输部门作为其他环保技术(例如电动汽车)的补充解决方案。
本文是基于跨越架构、工程、项目管理和产品管理等职能领域的技术专家团队的共同努力而创作的,特别是 Alexander Kanevskiy、Antti Kervinen、Atanas Atanasov、Brian Meaney、Chris MacNamara、Denisio Togashi、Derek Chilcote Bacco、Eero Tamminen、Eric Adams、Feruzjon Muyassarov、Gershon Schatzberg、Jukka Rissanen、 Krisztian Litkey、Lukasz Danilczuk、Madalina Lazar、Matti-Pekka Sivosuo、Markus Lehtonen、Marlow Weston、Martin Xu、Michael Fu、Michael Kadera、Mikko Ylinen、Patricia Cahill、Peter Mangan、Philip Brownlow、Samu Kaajas、Tuomas Katila、Thijs Metsch 和 Ukri Niemimuukko。这里要列出的还有很多,但可以通过点击广泛的参考资料部分来查看许多相关个人和团队的更详细的文档和代码。
• AutoTrac™ 转弯自动化间歇性地不产生端部转弯。• 主动实施指导在 MY20 和更新的 8R 拖拉机上没有响应。• AutoTrac™ 在 MY20 更新的 8R 轮式机器上反向行驶。• 400-600R 系列喷雾器 AutoTrac™ 在更高速度下行驶。• 在主点前面接合时,机器同步车轮运动过度。• 机器同步的 Wi-Fi 条信号电平不一致。• 机器同步踢出需要冷启动重启。• AutoPath™ 清除编辑轨迹页面中的移位会导致线路再生。• 无法加载和转换处方文件到第四代显示器。• 4200 显示器的视频馈送延迟。• 此版本包含重要的软件安全增强功能。