...................................................................122 图 8-24:水生生物多样性当地研究区域 .............................................................. 124 图 8-25:按第四纪集水区 B11B 定义的水生生物多样性区域研究区域 ............................................................................................. 124 图 8-26:相对水生生物多样性主题敏感性地图(环境筛选工具,2022 年) ............................................................................. 125 图 8-27:MBSP 淡水评估(MTPA,2011 年) ............................................................................. 126 图 8-28:与 FEPA 子集水区相关的研究区域 ............................................................................. 127 图 8-29:与 NFEPA 湿地相关的拟议开发项目(2011 年)...................................................................................... 127 图 8-30:与 NWM5 湿地相关的拟议开发项目(2019 年)............................................................................. 128 图 8-31:河谷底部湿地(上游和下游)概览......................................................................................... 129 图 8-32:在湿地季节性区域 50-60 厘米处采集的土壤样本......................................................................... 129 图 8-33:A)SEEP 1 湿地概览和大坝处的积水,B)在 SEEP 湿地永久区域采集的土壤样本表明灰坝的土壤污染迹象............................................................................. 130 图 8-34:概览SEEP 湿地:上游和下游视图..................................................................................... 130 图 8-35:在湿地永久区采集的土壤样本..................................................................... 131 图 8-36:湿地划定和分类......................................................................................................... 132
...................................................................122 图 8-24:水生生物多样性当地研究区域 .............................................................. 124 图 8-25:按第四纪集水区 B11B 定义的水生生物多样性区域研究区域 ............................................................................................. 124 图 8-26:相对水生生物多样性主题敏感性地图(环境筛选工具,2022 年) ............................................................................. 125 图 8-27:MBSP 淡水评估(MTPA,2011 年) ............................................................................. 126 图 8-28:与 FEPA 子集水区相关的研究区域 ............................................................................. 127 图 8-29:与 NFEPA 湿地相关的拟议开发项目(2011 年)...................................................................................... 127 图 8-30:与 NWM5 湿地相关的拟议开发项目(2019 年)............................................................................. 128 图 8-31:河谷底部湿地(上游和下游)概览......................................................................................... 129 图 8-32:在湿地季节性区域 50-60 厘米处采集的土壤样本......................................................................... 129 图 8-33:A)SEEP 1 湿地概览和大坝处的积水,B)在 SEEP 湿地永久区域采集的土壤样本表明灰坝的土壤污染迹象............................................................................. 130 图 8-34:概览SEEP 湿地:上游和下游视图..................................................................................... 130 图 8-35:在湿地永久区采集的土壤样本..................................................................... 131 图 8-36:湿地划定和分类......................................................................................................... 132
低成本和高效率的基于Zn的流量电池(ZFB)已成为可再生能源开发的有前途的能源存储技术之一。然而,在ZFB中,由于存在Zn 2 +,一个阴离子交换膜(AEM)损失离子电导率。Zn 2 +沉淀的侧反应导致AEM与第四纪基团的离子交换分解。虽然阳离子交换膜(CEM)由于离子交换组和阴离子之间的静电相互作用而阻碍阴离子结构。为了解决ZFB中离子交换膜不良的电导率,基于聚醚酰亚胺(PEI)的多孔离子导电膜是通过ZFBS的水相反转技术开发的。离子导电机制基于孔径的排除,这减轻了离子交换组对离子电导率的影响。通过引入合适的聚乙烯基吡咯烷酮(PVP)并控制四氢呋喃(THF)挥发时间,可以进一步改善膜性能。结果表明,在Zn/4-羟基-2,6,6-6,6-四甲基二哌啶中,1-氧基(TEMPO-OH)流量电池,库仑效率(CE)超过98%,能量效率(EE)在20 mA-cm-2-2-2中的能量效率(EE)可实现,并且可以在20 mA cm-2-2中以20 ma-2的供应来实现。 150个周期。基于PEI的多孔膜(低成本和高效率)被认为是ZFB的有希望的策略。
摘要:具有Kagome网络的金属间化合物具有有助于获得特定的结构特征,该特征有助于获得特定的物理特性,例如量子关键性,负载密度波,超导性,超导性,磁性磁性...然而,凝聚态物理学家对这些特性的研究和理解需要一方面,并且在其他手中,以及其他构成的构图,并在其他手中进行了构图。这两个点仍然是扎实的化学家可以带来所有专业知识的主要问题。在这种情况下,将阐明有关合成,结晶生长和与Kagome网络的金属间化合物的多尺度表征的主题。该受试者的第一部分将专门用于三元和第四纪金属间化合物的深度合成和研究,其kagome网络由金属3 d或金属4 f形成。第二部分将通过使用各种生长技术来关注其中一些化合物的晶体生长。合成,格式和结构,化学和磁研究将使用实验室中的设备进行,并补充使用大型仪器。国家和/或国际合作将被设想出来某些特定属性或使用非常具体条件的表征。论文将于2025年10月开始3年。候选人将拥有化学和/或物理材料的硕士学位或工程文凭。晶体学和/或磁分析的技能将是一种资产。
在艾伯塔省中部进行区域地下水研究期间,构建了一个多层水文地层模型,以表示可能影响地下水流的沉积模式的垂直和横向分布。在艾伯塔省城市和工业增长率最快的地区埃德蒙顿-卡尔加里走廊 (ECC),水文地层划分为地下水流和化学的测绘和数值建模提供了地质框架。鉴于该省多个部门对水的持续依赖,《水法》监管机构开展全面的地下水资源评估变得越来越重要。由于需要对地下水管理进行更详细的研究,以及 50 000 平方公里 ECC 区域内的多源地质和地球物理数据数量,走廊已被划分为更小的流域规模建模域。第一个水文地层建模领域重点关注 Medicine-Blindman 子流域(加拿大环境部代码 05CC)的新近纪-第四纪沉积物和上白垩纪-古近纪基岩单元,本报告中将其称为 Sylvan Lake 子流域(SLSB;~5933 平方公里)。由于非常规资源开发和 Sylvan Lake 镇的市政供水对水资源的压力越来越大,SLSB 被选为优先子流域。
b“ Mxene具有通用公式M 1.33 CT Z的MXENE于2017年首次报道。[6]这些mxenes来自平面内排序的第四纪最大相位,其公式为(m'1.33 m \ xe2 \ x80 \ x9c 0.66)alc。蚀刻后,蚀刻了Al层和少数过渡金属M \ Xe2 \ X80 \ X9D,将其留下了平面内有序的分区的2D纸。By now MXenes are well recognized as performing well as negative electrodes in AASCs, [5a\xe2\x80\x93c,7] because of their high conductivity, excellent hydrophilicity, great tolerance to accom- modate various ions and negative operation potential window in three electrode configurations (e.g., to 1.6 V vs. Ag/AgCl in 21 M KCH 3 COO [8] ).最近,由于其高密度和无效材料的避免,诸如粘合剂,导电剂等,更多的工作集中在基于MXENE的自由层膜上,以实现SCS中的高体积电容(C V)。[9]在先前的报告中,硫酸(H 2 SO 4)一直是选择的电解质。细胞通常达到C S> 300 F G 1或> 1500 F CM 3的高值。[5d,10]但是,与中性水解物相比,H 2 SO 4既安全也不是绿色。进一步的问题是,i)风险“
摘要 - 过去几年,数据存储需求的不断增长的趋势激发了对替代数据存储系统的研究。由于其生化特征,合成DNA分子被认为是新存储范式的潜在候选者。由于这种趋势,在过去几年中提出了几种编码解决方案,以将数字信息存储到DNA中。尽管是一个有前途的解决方案,但DNA存储仍面临两个主要障碍:合成的巨大成本和测序过程中引入的噪声。此外,当未尊重生化定义的编码约束时,这种噪声会增加:避免均聚物和模式以及平衡GC含量。本文描述了一种新颖的熵编码器,该编码器可以嵌入到任何基于块的图像编码模式中,并旨在鲁棒化解码结果。我们提出的解决方案在生成的第四纪流中引入了可变性,减少了均聚物和重复模式的量,以降低发生错误的可能性。在限制代码以更好地满足约束的同时会降低压缩效率,但在这项工作中,我们提出了一种替代方法,以进一步稳健地稳健地稳健不存在的代码而不会影响压缩率。为此,我们将提出的熵编码器集成到了四个现有的JPEG启发的DNA编码器中。然后,我们通过提供特定的评估指标来评估所有不同方法的编码数据的质量。
•促进社区计划,包括环绕式资源合作伙伴关系(F)注意:上面的括号中的字母对应于下面的项目。这些是适合更广泛主题领域的详细举措。A.特定示例:1。高风险妇产金计划胎儿护理和治疗中心(FCTC)人口2。放射学输液中心PCP的推荐B.特定示例:1。加利福尼亚国际马拉松医疗团队志愿者2。流感诊所3。高中的心脏健康筛查4.护理外展志愿者正在行动(NOVA)C。具体示例:1。送礼后电话2。麻醉前诊所(PAC)诊所,包括远程医疗,多学科,推荐3。虚拟的随访过渡访问以避免再入院/错过并发症D.特定示例:主要护理E.特定示例:1。集中的患者运输解决方案(例如,载体护理,Lyft)运输2。优化整个卫生系统的患者护理过渡a。所有转移请求的预期管理,包括程序,卧床和研究招生b。与服务线领导合作,以优化患者护理c。增加所有插入三级和第四纪转移d。增加排放接收区域e的利用。有效的运输工作流程3。护理计划和程序发展的过渡F.具体示例:1。创伤暴力预防2。护理过渡
国际地层学委员会(ICS)宣布了新的年代地层学量表国际地质科学联盟(IUGS)执行委员会的批准。这些变化尤其影响了全新世 - 第四纪最年轻的部门。根据多年的研究,建议将全新世分为三个层:早期的蒙古格陵兰舞台,中蒙古中部北流感阶段和蒙古晚期的巨型巨型舞台。所有这些都是根据与气候变化相同的碳的同位素组成的急剧变化时间来确定的[1]。类比与公认的“全新世”(持续了过去12000年的时代),生态学家尤金·斯托勒(Eugene Stormer)介绍了“人类世”一词 - 与生态系统相关的人类活动具有破坏性的时期。人类世的一个特征是,人类活动对地球的影响比自然地质过程更大[2]。人类正处于其历史上最大的阶段过渡之一的边缘。重要的事件是原子测试,化石燃料发电厂的广泛使用,野生物种灭绝的人和宠物的数量急剧增加,大气中的CO 2含量增加,海洋的微塑性污染,对肥料的使用以及对食物的种植,源于外国(入侵性的植物)和新的养分型。尽管Vernadsky的作品是100年前写的,而Lovelock的作品 - 50年前,人类对环境宏观过程的理解水平仍处于起步阶段。
多光谱 Landsat 7 ETM+ 分析为传统测绘提供了先前的研究。为地质测绘提供了宝贵的帮助。卫星收集的遥感图像 地质和地理状况:研究区域位于北纬 33°30 和 34° 之间,通过全景图显示,它们位于北纬 4°30 和南经 5°。东北部恢复了中阿特拉斯高原作为数字线性延伸的存在和重要性,主要包括景观中的地质不连续性、下侏罗纪白云质石灰岩的“线性”英语和线性“排列”(下和中莱阿斯),克服了法语系列 [1]。由三叠纪红色页岩和玄武岩组成 [4-7]。这些线纹与结构相关,其特征是板状结构,更多断层和元素,如断层、裂缝、褶皱轴和褶皱,呈单调的地貌。这是一个大型的喀斯特高原岩性接触。它们导致地形不同阶段,俯瞰 Sais 平原,在海拔 1000 米以上的洼地、排水和植被异常 [2]。 它被 NE-SW 断层和 [3] 穿过。然而,在几乎所有情况下,Tizi n'Tratten 的提取和分离,卫星图像将这些结构与 Atlas Pleated 的东南部中线纹分离,由北中阿特拉西断层 (ANMA) 表示。水平非常高 [1]。北部和西北部的界限由里夫南部的第三纪和第四纪覆盖层以及有趣的技术线纹和走廊决定(图1)。