在本文中,我们探讨了以下建议:施瓦茨柴尔德黑洞将在其寿命结束时,将经历量子过渡到“白洞”:一个恰恰是黑洞时间反转的对象。这种过渡采用量子隧道的形式。为了评估隧道幅度,我们表征了量子重力影响占主导地位的区域,因为与外部曲率相交的高度相交的高度曲面所包围,外部曲率等于零。这使我们能够恢复隧道幅度,如正常之间的增强角度指定的隧道幅度。这项工作的长期目的是找到量子重力区域真空爱因斯坦方程的复杂解,从而为黑洞蒸发后对黑洞发生的情况提供了完整的解释。
物理 51 期中考试样本 #1 (23 分) 由 Todd Sauke 提出 问题 #1。点电荷 Q = -800 nC(纳库仑)和两个未知点电荷 q 1 和 q 2 的放置位置如右图所示。由于电荷 Q、q 1 和 q 2 ,原点 O 处的电场等于零。我们要确定电荷 q 1 和 q 2 的值。原点处的电场矢量有两个分量(x 和 y)。由于原点处的电场为零,所以 x 和 y 分量都为零。我们可以分别考虑 x 和 y 分量。请记住,由于 q 1 引起的原点处电场的 y 分量为零,因为它在 x 轴上。由于电荷 Q 引起的原点处 E 场的 y 分量是多少?(使用三角函数求得 y 分量。)
自20世纪30年代以来,人们就已认识到服装在人类生物气象学研究中的重要性(例如,Winslow等人,1937年;Gagge等人,1938年;Winslow等人,1938年;Gagge等人,1941年)。在这些研究中,人们运用实验和理论工具研究了服装的作用,将其作为人体-大气界面的一个重要输入变量。在20世纪下半叶(例如,Auliciems和de Freitas,1976年;de Freitas,1979年),服装被视为并被解读为人类对环境条件的“反应”,并被分析为一个决定性模型的输出。如今,服装对生物气象热调节的影响通常以两种方式考虑:作为热生理模型(例如,Fiala 等人,2012)的输入参数(例如,Havenith 等人,2012)或作为代表热适应行为的模型输出(Lin,2009;Potchter 等人,2018)。在这种情况下,r cl 可用作表示人体热交换不平衡程度的量度。当热量过剩时,人体需要冷却以达到能量平衡。此时 r cl 值为负。请注意,在迄今为止发表的研究中根本没有考虑负服装阻力值,而只是将其等于零,理由是“由于在公共场合裸体是不可接受的,因此 clo 值 ≤ 0 被设置为零”(Yan,2005)。本研究中也使用了负的服装阻力值,因为当服装被视为一种热调节器而忽略其对人体行为的依赖性时,这些值是可以解释的。相反,当存在热量不足时,人体需要变暖才能达到能量平衡。在这种情况下,r cl 值为正。当人体处于能量平衡状态时,既不需要冷却也不需要变暖,感觉这种状态很舒适。在这种情况下,r cl 非常接近或等于零。服装阻力参数是一个复数,因为它取决于人和环境的特征。在人类特征中,个人、社会方面以及活动类型是最具决定性的。活动类型决定代谢活动率,该率在 40 到 600 Wm − 2 之间变化
Theta Ja 定义为结温或芯片温度与环境温度之间的热阻。环境温度定义为器件周围自由空气的温度。如果器件处于外壳内,则应在外壳内测量环境温度。公式 1 显示了芯片温度与周围空气温度、Theta Ja 和器件耗散功率之间的依赖关系。如果芯片与周围空气之间存在理想的热传递,则 Theta Ja 等于零且 T J = T A 。或者,如果 IC 在关闭时不耗散任何功率,则 T J = T A 。许多因素都会阻碍热传递,这就是将 Theta Ja 定义为电阻的原因。同样,Theta Ja 定义为对周围空气与封装内芯片位置之间热传递的阻力。Theta Ja 的单位是器件耗散功率每瓦摄氏度。例如,如果 Theta Ja = 26 ° C/W,则设备每消耗 1 W 功率,芯片温度就会升高 26 ° C。
本文关注的是条件独立性的检验。我们首先建立条件独立性和相互独立性之间的等价性。基于这种等价性,我们提出了一个指标,通过量化变换变量之间的相互依赖性来衡量条件依赖性。所提出的指标有几个吸引人的特性。(a)它是无分布的,因为所提出的指标的限制零分布不依赖于数据的总体分布。因此,可以通过模拟列出临界值。(b)所提出的指标范围从零到一,当且仅当条件独立性成立时才等于零。因此,它在备选假设下具有非平凡的力量。(c)它对异常值和重尾数据具有鲁棒性,因为它对条件严格单调变换不变。(d)它的计算成本低,因为它包含一个简单的闭式表达式,可以在二次时间内实现。(e)它对涉及计算所提出的指标的调整参数不敏感。 (f) 新指数适用于多变量随机向量以及离散数据。所有这些属性使我们能够将新指数用作各种数据的统计推断工具。通过广泛的模拟和因果发现的实际应用证明了该方法的有效性。
为了您的方便,我会重复一些事情。因此,在一定温度以下的耐药性突然下降称为“超导现象”,或者这会引起超导性。在电阻消失的温度中称为a,“临界温度”,这是特定材料的特性。以及TC,对于常规超导体,超导过渡温度通常为少数开尔文的顺序。现在,我们昨天讨论了这一点,有一些非常规超导体,也称为“高温超导体”。,并且对它们的广泛知识没有传统的知识。但是,TC的确从几个开尔文到大约23 kelvin,因为这是针对NB3 GE的。和功能是; I-零电阻或电阻率,ii -ii -no晶体结构的变化,这是通过X射线衍射来验证的。在TC下方和TC上方下方。处于正常状态和超导状态。和第三,是,它的状态是超级传导状态的特征是,(a)电导率为有限的,(b)当前密度仍然是有限的,(c)是,电场为零,(d)是磁场是恒定的。,这不能由经典的电动动力学来解释。因为,欧姆定律说,j等于sigma e,j为有限,j是当前的密度,j是有限的,sigma必须去,sigma倾向于无穷大,而e必须等于零,零。所以这是第三个,这是(c)条件。以及E等于e等于,减去del b,del t,使您b到b常数,这是数字d。因此,这些是超级传导状态的一些特征。
注释 1 V A 和 V B 表示检测到的正弦波的平均偏差 (MAD)。注意,为了使此传递函数线性表示正位移,LVDT 的 V A 和 V B 之和必须与行程长度保持不变。请参见“工作原理”。另请参见图 7 和图 12 中的 R2。 2 从 T MIN 到 T MAX ,仅由 AD598 引起的总误差由增益误差、增益漂移和失调漂移相结合决定。例如,AD598AD 从 T MIN 到 T MAX 的最坏情况总误差计算如下:总误差 = +25 ° C 时的增益误差(± 1% 满量程)+ –40 ° C 至 +25 ° C 之间的增益漂移(FS 的 50 ppm/ ° C × +65 ° C)+ –40 ° C 至 +25 ° C 之间的失调漂移(FS 的 50 ppm/ ° C × +65 ° C)= ± 1.65% 满量程。请注意,满量程的 1000 ppm 等于满量程的 0.1%。满量程定义为最大正输出和最大负输出之间的电压差。3 仅 AD598 的非线性,以满量程的 ppm 为单位。非线性定义为 AD598 输出电压与直线的最大测量偏差。直线由产生的最大满量程负电压与产生的最大满量程正电压连接而成。4 参见传递函数。5 该偏移指的是 (V A –V B )/(V A +V B ) 输入,跨越满量程范围 ± 1。[要使 (V A –V B )/(V A +V B ) 等于 +1,V B 必须等于零伏;相应地,要使 (V A –V B )/(V A +V B ) 等于
该提案描述了基于爱因斯坦De-Haas实验的布置。外部施加的磁场通过将微波功率频率降低到铁氧体芯周围的线圈,从而磁化了铁氧体芯。铁磁共振是由于Zeeman拆分对材料的宏观磁化而导致自旋进液磁矩相互作用的影响。核心在铁磁共振时达到负渗透性。由于负渗透性,铁素体将磁化点抵消到施加的直流电场上给出的铁氧体芯的一端。在某些情况下,负渗透性可能导致磁场的驱逐,导致B等于材料内部的B。这种诱发的现象与在超导体中观察到的Meissner效应有些类似。在负渗透性的情况下,负磁反应有效地将材料的内部屏蔽到外部磁场上。磁场的卷曲为零,导致移动电荷载体上等于零的净力。简介:一种有趣的科学现象,但尚未理解的是磁性。磁性材料用于许多重要的技术,从大规模发电,存储,传输电动机和发电机的高性能磁铁到纳米级上的磁性信息,包括使用SpinTronics概念的存储,逻辑和传感器设备。物质的磁性继续引起科学的好奇心和想象力。电子的自旋是磁性的基本组成部分,铁磁,铁磁和抗磁磁性材料的多样性以及磁磁性和磁磁材料的多样性是由附近电子旋转的材料中附近电子旋转的不同耦合产生的。磁性材料的特征,行为和效用受材料内部竞争相互作用引起的显微镜旋转构型的影响。外源磁,电场和光场以及光本身都会影响或修改磁化本身。这为将来的超湿,超快速和低功率微电子系统的发展打开了大门。即将到来的技术时代(IoT)时代将受到技术,经济,环境和社会的这些成就的影响[1]。
收到日期:2021 年 8 月 5 日;修改后收到日期:2021 年 9 月 28 日;接受日期:2021 年 10 月 2 日;在线发布日期:2021 年 11 月 1 日摘要本文对室温下由多孔功能梯度聚合物材料 (PFGPM) 制成的 3D 打印圆柱形试件进行了疲劳寿命试验。在各种孔隙率和梯度指数参数下,获得了完全反向弯曲、平均应力等于零的恒幅载荷的试验结果。使用应力寿命方法通过实验评估疲劳特性。对光滑试件进行了 FEA 模拟,采用了三种加载模式(反向弯曲、反向轴向和反向扭转)。数值分析 (FEA) 和实验结果用于强调应力比 (R) 对疲劳寿命的影响。在反向弯曲试验中使用了五个应力比值(R = -1、0、0.25、0.5 和 1)。试验结果表明,受反向弯曲的试件的寿命比受轴向和扭转载荷模式的试件更长。结果表明,试件的寿命随着载荷比的增加而增加,实验和数值工作之间的最大差异为 8%。疲劳极限值受孔隙率参数和梯度指数的影响。版权所有 © 2021 国际能源与环境基金会 - 保留所有权利。关键词:应力寿命方法;SN 曲线;加载模式;应力比;疲劳寿命;FEA。1. 简介功能梯度材料 (FGM) 是一类先进材料,其结构特性沿厚度方向分级 [1]。孔隙率梯度是 FGM,其中材料通过部分层的密度或孔径的变化可用于增强其特性。它们可以使用 3D 打印技术用各种材料制成。在金属和聚合物泡沫中可以找到提供轻质和足够机械稳定性能的 PFGM。除其他各种用途外,聚合物还是一种用途广泛且必不可少的材料,可用于能源、航空航天和生物材料,因为它们能有效吸收冲击载荷并控制静态和动态响应,[2]。据估计,90% 的金属部件使用故障都是由疲劳引起的。疲劳过程经历几个阶段,从工程角度来看,将结构的疲劳寿命分为三个阶段比较方便:疲劳裂纹萌生、稳定裂纹扩展和不稳定裂纹扩展 [3]。QS Wang 等人 [4] 研究了功能梯度 Ti-6Al-4V 网状结构在相同体积应力条件下的疲劳行为。研究发现,疲劳裂纹首先萌生在
同行评审文件文章信息:https://dx.doi.org/10.21037/tcr-24-1503 #Reviewer A 该研究采用蛋白质组范围的孟德尔随机化 (MR) 方法,利用冰岛人大规模 GWAS 的遗传关联来确定结直肠癌 (CRC) 及其亚型的潜在靶点。主要发现包括鉴定出 31 种与 CRC 具有强有力因果关联的蛋白质,其中一些显示出解剖位点特异性,凸显了 CHDRL2 作为 CRC 及其亚型的共同靶点的重要性。方法学优势在于使用 MR 来最大限度地减少混杂因素和验证 FinnGen 研究的结果。局限性包括潜在的水平多效性和人口结构偏差,因为该研究主要关注欧洲人群,这可能会限制普遍性。尚未解决的问题涉及已识别蛋白质影响CRC发展和进展的确切生物学机制,以及这些发现的临床适用性,特别是关于CRC及其亚型的靶向治疗和个性化治疗策略。我建议作者准确指出靶标的类型,例如治疗靶点。 评论1:在摘要中,作者需要描述工具变量的识别,以及主要的统计分析。 回复1:谢谢您的审阅,我们在摘要中添加了IV信息和MR方法以及相关的统计阈值 正文更改:第32行、35-38行 评论2:在引言的第一段中,将早期识别和新的治疗靶点联系起来很容易引起混淆,因为早期诊断和治疗是不同的。 回复2:谢谢您的审阅,我们在这一部分没有说清楚。因为之前的研究已经证实了循环蛋白与肿瘤之间的相关性(可能具有诊断潜力),所以这些蛋白也是重要的潜在耐药靶点。我们在文章中添加了 正文修改:第89-90行 评论3:在方法论中,请提供MR分析的更多细节,包括工具变量的使用和敏感性分析。 回复3:感谢您的评论,MR-Egger回归和MR-PRESSO用于检测相关的水平多效性。MR-Egger回归使用从回归分析中获得的截距来确定水平多效性。我们假设如果截距等于零,则不存在相关的水平多效性。MR-PRESSO使用失真测试来检测可能表现出水平多效性的异常值,并通过删除异常值进一步校正IVW估计值。这项分析是在我们第一次处理IV时进行的,我们用于通过FDR进一步筛选的数据都是通过MR-PRESSO测试的数据。 正文修改:第152-155行 评论4:在讨论中,作者需要对研究结果的临床意义有更详细的评论。请考虑引用几篇相关论文: