摘要:尽管大豆蛋白质量很高,但由于 Kunitz (KTi) 和 Bowman-Birk 蛋白酶抑制剂 (BBis) 的存在,生大豆和豆粕不能直接添加到动物饲料混合物中,这会降低动物的生产率。热处理可以显著灭活胰蛋白酶和糜蛋白酶抑制剂 (BBis),但这种处理耗能大、成本高,并对种子蛋白的质量产生负面影响。作为一种替代方法,我们采用 CRISPR/Cas9 基因编辑来在 BBi 基因中产生突变,从而大幅降低大豆种子中的蛋白酶抑制剂含量。农杆菌介导的转化被用于产生几个稳定的转基因大豆事件。使用 Sanger 测序、蛋白质组学分析、胰蛋白酶/糜蛋白酶抑制剂活性测定和 qRT-PCR 将这些独立的 CRISPR/Cas9 事件与野生型植物进行了比较。总的来说,我们的结果表明,影响大豆主要 BBi 基因的一系列等位基因功能丧失突变的产生。两个高表达种子特异性 BBi 基因的突变导致胰蛋白酶和糜蛋白酶抑制剂活性大幅降低。
摘要:我们研究了通过 CRISPR-Cas9 合子电穿孔在小反刍动物中进行单步基因组编辑的可能性。我们利用双 sgRNA 方法靶向绵羊胚胎中的 SOCS2 和 PDX1 以及山羊胚胎中的 OTX2。比较了在胚胎发育的四个不同时间进行的显微注射和三种不同电穿孔设置的基因编辑效率。在受精后 6 小时对绵羊合子进行电穿孔,使用包括短高压(穿孔)和长低压(转移)脉冲的设置,可以有效产生 SOCS2 敲除囊胚。CRISPR/Cas9 电穿孔后的突变率为 95.6% ± 8%,包括 95.4% ± 9% 的双等位基因突变;相比之下,使用显微注射时分别为 82.3% ± 8% 和 25% ± 10%。我们还成功破坏了绵羊的 PDX1 基因和山羊胚胎的 OTX2 基因。PDX1 的双等位基因突变率为 81 ± 5%,OTX2 的双等位基因突变率为 85% ± 6%。总之,利用单步 CRISPR-Cas9 合子电穿孔,我们成功地在小反刍动物胚胎基因组中引入了双等位基因缺失。
INCE于1958年首次演示,碳 - 碳复合材料现在通常用于防御和航空应用中。 碳 - 碳复合材料是由碳纤维和基质相组成的热稳定复合材料。 这些材料被美国国防部归类为“关键技术”,用于弹道性诺塞术;火箭电动机;和重新进入材料,例如隔热罩和Aeroshells。 当前的碳 - 碳复合材料通常是通过聚合物浸润和热解过程创建的,并且散装密度较低,约为1.60 g/cc。 具有较高散装密度的碳 - 碳复合材料是可取的,因为该特性等于在其他领域的性能提高,包括更高的硬度,更高的导热率以及更大的机械侵蚀和耐磨性。 使用热等位压力浸入碳化(HIPIC)过程可以实现较高的大量密度约为1.95 g/cc。 但是,几十年前开发的过程旨在为洲际弹道导弹制造鼻孔,是危险的,非常昂贵且难以实施的。 材料研发公司Matech(加利福尼亚州韦斯特莱克村)最近开发了一种申请专利的技术,用于制造全新的超高密度(UHD)碳 - 碳复合材料。 这种开发扩展了Matech先前使用现场辅助烧结技术(FAST)的SIC/SIC和C/SIC陶瓷基质复合材料致密的工作。 1,2INCE于1958年首次演示,碳 - 碳复合材料现在通常用于防御和航空应用中。碳 - 碳复合材料是由碳纤维和基质相组成的热稳定复合材料。这些材料被美国国防部归类为“关键技术”,用于弹道性诺塞术;火箭电动机;和重新进入材料,例如隔热罩和Aeroshells。当前的碳 - 碳复合材料通常是通过聚合物浸润和热解过程创建的,并且散装密度较低,约为1.60 g/cc。具有较高散装密度的碳 - 碳复合材料是可取的,因为该特性等于在其他领域的性能提高,包括更高的硬度,更高的导热率以及更大的机械侵蚀和耐磨性。使用热等位压力浸入碳化(HIPIC)过程可以实现较高的大量密度约为1.95 g/cc。但是,几十年前开发的过程旨在为洲际弹道导弹制造鼻孔,是危险的,非常昂贵且难以实施的。材料研发公司Matech(加利福尼亚州韦斯特莱克村)最近开发了一种申请专利的技术,用于制造全新的超高密度(UHD)碳 - 碳复合材料。这种开发扩展了Matech先前使用现场辅助烧结技术(FAST)的SIC/SIC和C/SIC陶瓷基质复合材料致密的工作。1,2
摘要 靶向治疗 (TT) 在肿瘤学中的应用延长了患者的生存期,甚至使以前被认为无法治愈的癌症完全缓解。由于治疗指数较小,由于副作用而减少 TT 的剂量或间隔用药,对患者来说意味着治疗机会的重大损失。在没有药物相互作用和显著副作用的情况下,用于支持治疗的顺势疗法可改善患者的生活质量、肿瘤治疗的依从性,从而提高他们的生存率。根据作者的临床经验和已发表的研究,本研究提出了一种系统性 TT 支持治疗的治疗方案。治疗的独创性在于将对症稀释和动态化的顺势疗法药物与患者体质顺势疗法药物以及用于 7c (10 -14 ) 靶向治疗的等位治疗剂相结合。如果需要,可以在 4c (10 -8 ) 中添加受副作用影响最大的器官的同名器官疗法。这种治疗方案被广泛接受,耐受性良好。25 年来,已有约 5,000 名患者接受了该方案,包括接受激素治疗的患者。促进靶向治疗的耐受性和接受性对于肿瘤学非常重要,以便充分受益于
大规模基因筛查和分析已使人们能够提名新的肿瘤靶点,但开发针对这些靶点的强效和选择性小分子抑制剂仍然是一项资源密集型工作。此外,酶抑制不一定会产生与靶向基因敲除相同的表型。我们开发了纵向分析分析特定编辑 (LAPSE),它利用 CRISPR 技术进行精确编辑并跟踪突变等位基因频率以揭示细胞命运。这可用于确认癌细胞生长是否特别需要酶活性,或者可以通过跟踪精确的氨基酸替换或框架内缺失来确定特定的蛋白质-蛋白质相互作用。在前者的情况下,观察到酶失活突变从存活细胞的等位基因库中消失表明靶标的药理学抑制足以引起生长抑制。相反,通过存活细胞中的等位基因扩增观察到的挽救和维持癌细胞活力的催化失活突变表明需要靶向蛋白质降解才能产生治疗效果。我们已成功应用 LAPSE 检测来指导多种靶标(包括激酶、甲基转移酶和乙酰转移酶)的药物研发工作。通过 NGS 和单细胞分析,我们提高了等位基因分析的分辨率,并且最近还扩展了 LAPSE 技术以用于体内靶标评估。
角质层是覆盖地上植物器官的保护层。我们研究了蜡在建立大麦 ( Hordeum vulgare ) 角质层屏障中的作用。大麦蜡质突变体 cer-za.227 和 cer-ye.267 显示蜡负荷减少,但受影响的基因以及蜡变化对屏障功能的影响仍然未知。测量了 cer-za.227 和 cer-ye.267 中的角质层蜡和通透性。通过批量分离 RNA 测序分离突变体基因座。通过基因组编辑产生了新的 cer-za 等位基因。CER-ZA 蛋白在酵母和拟南芥 cer4-3 中表达后进行了表征。Cer-za.227 携带编码酰基辅酶 A 还原酶 (FAR1) 的 HORVU5Hr1G089230 的突变。 cer-ye.267 突变位于编码 b -酮脂酰辅酶 A 合酶 (KAS1) 的 HORVU4Hr1G063420 上,与 cer-zh.54 等位。cer-ye.267 中角质层内蜡质含量明显减少。cer-za.227 的角质层失水和通透性与野生型 (WT) 相似,但在 cer-ye.267 中则有所增加。去除角质层外蜡质表明,调节角质层蒸腾作用需要角质层内蜡质,而不是角质层外蜡质。cer-za.227 和 cer-ye.267 之间角质层内蜡质含量的差异减少以及角质层外蜡质的去除表明,角质层屏障功能主要依赖于角质层内蜡质的存在。
DNAJC6 编码辅助蛋白,这是一种参与突触前末端网格蛋白介导的内吞作用 (CME) 的辅助伴侣蛋白。DNAJC6 的双等位基因突变会导致一种复杂的早发性神经退行性疾病,其特征是儿童时期迅速进展的帕金森病-肌张力障碍。该疾病通常与其他神经发育、神经和神经精神特征有关。目前,尚无针对这种疾病的疾病改良治疗方法,导致发病率高且过早死亡的风险高。为了研究儿童期发病的 DNAJC6 帕金森病的潜在疾病机制,我们从三名携带致病性功能丧失 DNAJC6 突变的患者体内生成了诱导性多能干细胞 (iPSC),随后开发了一种中脑多巴胺能神经元疾病模型。与年龄匹配和 CRISPR 校正的同源对照相比,神经元细胞模型显示出疾病特异性辅助蛋白缺乏以及突触小泡循环和稳态紊乱。我们还观察到影响腹侧中脑模式和神经元成熟的神经发育失调。为了探索病毒载体介导的基因治疗方法的可行性,用慢病毒 DNAJC6 基因转移处理 iPSC 衍生的神经元培养物,从而恢复辅助蛋白表达并挽救 CME。我们的患者衍生神经元模型提供了对辅助蛋白缺乏的分子机制的更深入见解,并为开发有针对性的精准治疗方法提供了强大的平台。
在植物功能基因组学领域,褚成才研究组对多种水稻地方品种的NUE相关性状进行了评估,并通过GWAS鉴定了OsTCP19启动子中与分蘖对氮的反应(TRN)相关的变异,表明OsTCP19在适应不同地理区域局部土壤条件下发挥的重要作用(Liu et al., Nature , 2021)。左建如研究组证明了Ghd7和ARE1的优良等位基因组合在低氮条件下提高了NUE和籽粒产量,定义了基于Ghd7–ARE1的氮利用调控机制,为水稻NUE的遗传改良提供了有用的靶点(Wang et al., Mol Plant , 2021)。王永红研究组与合作者描述了造成水稻GNP多样性的新型遗传变异,揭示了调控农学重要基因表达的潜在分子机制,并为通过操纵含有顺式调控元件的IR序列来提高水稻产量提供了一种有希望的策略(Wu et al., Mol Plant , 2021)。姚善国研究组与合作者揭示了LARGE2- APO1/APO2模块介导控制水稻穗大小和粒数的新型遗传和分子机制,表明该模块是改良作物穗大小和粒数的一个有希望的靶点(Huang et al., Plant Cell , 2021)。
稻瘟病是影响全球水稻生产的最常见的破坏性疾病。宿主生物的抗性已成为控制稻瘟病最实用、最经济的方法。最近的研究表明,序列特异性核酸酶(有规律地聚集在一起)间隔短回文重复序列 (CRISPR)/Cas9 技术被认为是通过基因特异性基因组编辑增强作物的最成功和最有效的工具。然而,关于它们在改良优良水稻品种方面的应用报道并不多。在本研究中,我们描述了 Cas9-OsHDT-sgRNA 表达基因盒的开发,该基因盒靶向水稻中的 OsHDT701 基因并提高水稻的稻瘟病抗性。根据 Sanger 测序方法,这些植物的目标位置发生了缺失 (Del) 改变。我们证明,具有预期基因改变但没有移植 DNA 的突变系显示 OsHDT701 基因诱导的等位基因突变。用 M13 引物确认重组克隆。在突变纯合植物中,对植物的高度、大小、形状、叶片长度、穗长和叶片反应等表型和农艺性状进行了检查,以确定其抗稻瘟病性。与野生型植物相比,所有突变株系因病原体感染而引起的稻瘟病病变明显减少。此外,从外观上看,突变植物和野生植物在农艺性状方面没有显著差异。我们的研究结果表明,CRISPR/Cas9 基因编辑系统是一种增强水稻抗稻瘟病性的实用方法。
摘要。2014 年,在丹麦技术大学国家空间研究所 (DTU-Space) 的技术支持下,使用陆地重力、航空重力、海洋卫星测高和 GOCE 任务第 5 版的最新卫星重力数据,为菲律宾计算了一个初步的大地水准面模型,即菲律宾大地水准面模型 2014 (PGM2014)。计算过程中使用的数字地形模型基于 15 英寸 SRTM 数据。该模型在全球垂直参考系统中计算,然后拟合到 ITRF GNSS/水准测量并用 0.50m 的 RMS 值进行验证。2016 年,使用重新处理和加密的陆地重力数据(从 1261 个点到 2214 个点),将 PGM2014 重新计算为 PGM2016。重新处理的重力数据和 GNSS/水准测量(RMS = 0.040m)中可以看到显著的改进。 2017 年至 2020 年期间,将进一步将城镇中的陆地重力密度增加到 41,000 个点,以完善大地水准面。随着新重力数据的出现,将对新版本的大地水准面进行重新计算。DTU-Space 和哥本哈根大学尼尔斯玻尔研究所开发的 FORTRAN 程序的 GRAVSOFT 系统用于计算菲律宾大地水准面。简介点的垂直坐标(即高度)指的是称为垂直基准的坐标表面。垂直基准的通用选择是大地水准面 - 正高和动态高度的参考表面(Vanicek,1991 年)。它是一个等位水平
