数据集异质性。有趣的是,具有相反方向效应的ASE变体的绝对效应大小明显低于具有一致方向效应的ASE变体,这表明较小的效应大小可能促进方向移动,从而增强了不同环境中的弹性。该假设进一步支持了与免疫相关组织中ASE变体数量相对较高的变异性。玉米中的类似发现表明,具有相反方向效应的ASE变体可能
基因调控是多细胞生物的重要过程,但识别功能性调控序列和机制可能具有挑战性。在秀丽隐杆线虫中,正向遗传学可以识别破坏生理过程的内源性突变(“等位基因”),从而以无偏见的方式定义功能序列(Brenner 1974;Trent、Wood 和 Horvitz 1988;Desai 等人 1988;Barton、Schedl 和 Kimble 1987)。基于 CRISPR 的基因组编辑可用于测试内源序列的功能和生理作用(Dickinson 和 Goldstein 2016;Vicencio 和 Cerón 2021)。报告基因检测中对非编码 DNA 进行系统性测试(例如“报告基因抨击”)可以识别功能序列,但不能直接检查生理功能(Aamodt、Chung 和 McGhee 1991;Didiano 和 Hobert 2006;Boulin、Etchberger 和 Hobert 2006;Nance 和 Frøkjær-Jensen 2019)。
摘要 突变型 RHO 是常染色体显性视网膜色素变性 (adRP) 最常见的遗传原因。在此,我们开发了一种等位基因特异性基因编辑治疗药物,以选择性地靶向人类 T17M RHO 突变型等位基因,同时首次保持野生型 RHO 等位基因完好无损。我们鉴定出一种金黄色葡萄球菌 Cas9 (SaCas9) 引导 RNA,它对人类 T17M RHO 等位基因具有高活性和特异性。使用 HEK293T 细胞和患者特异性诱导多能干细胞 (iPSC) 进行的体外实验显示出活性核酸酶活性和高特异性。将单个腺相关病毒血清型 2/8 包装的 SaCas9 和单个引导 RNA (sgRNA) 视网膜下递送到 RHO 人源化小鼠的视网膜下,表明这种治疗药物选择性地靶向突变型等位基因,从而下调突变型 RHO mRNA 表达。施用这种治疗药物可使杂合突变人源化小鼠的视网膜功能长期(治疗后长达 11 个月)改善,并保存光感受器。我们的研究表明,体内治疗效果具有剂量依赖性。在全基因组测序水平上未观察到不良的脱靶效应。我们的研究为进一步开发这种有效的治疗药物来治疗 RHO - T17M 相关 adRP 提供了强有力的支持,也为开发基因编辑医学提供了一个可推广的框架。此外,我们成功恢复了患有 RHO 人源化小鼠的视力,验证了基于等位基因特异性 CRISPR/Cas9 的药物对其他常染色体显性遗传视网膜营养不良的可行性。
1 耶鲁大学医学院免疫生物学系,美国纽黑文;2 耶鲁大学医学院细胞和分子成像中心细胞生物学系,美国纽黑文;3 Celldex Therapeutics,美国纽黑文;4 耶鲁大学医学院 WM Keck 基金会生物技术资源实验室分子生物物理学和生物化学系,美国纽黑文;5 耶鲁大学医学院耶鲁基因组编辑中心内分泌和代谢中心,美国纽黑文;6 耶鲁大学医学院皮肤病学、病理学和免疫生物学系,美国纽黑文;7 福特汉姆大学生物科学系癌症、遗传疾病和基因调控中心,美国布朗克斯;8 哥伦比亚医学中心癌症遗传学研究所神经病学、病理学和细胞生物学系,美国纽约; 9 美国纽约哥伦比亚大学癌症遗传学研究所儿科和病理学与细胞生物学系;10 美国纽黑文耶鲁大学医学院免疫生物学和药理学系;11 美国纽黑文耶鲁大学医学院神经病学和药理学系
由于非平稳性和脑电图信号的低信噪比(低SNR)特征,实现较高的分类性能是具有挑战性的。空间过滤通常用于改善SNR,但通常会忽略潜在的时间或频率信息中的个体差异。本文通过正交小波分解研究了运动图像信号,通过该分解,原始信号被分解为多个无关的子带分量。此外,通过加权渠道频谱过滤量滤波器进行过滤,并通过空间过滤共同实施,以提高EEG信号的可区分性,并具有嵌入在目标函数中的l 2-NORM正规化术语,以解决潜在的过度处理问题。最后,使用高斯先验的稀疏贝叶斯学习应用于提取的功率特征,产生RVM分类器。SEOWADE的分类性能比几种竞争算法(CSP,FBCSP,CSSP,CSSSP和Shallow Convnet)的分类性能要好得多。通过SEOWADE优化的空间滤波器的头皮重量图在神经生理学上具有更有意义。总而言之,这些结果证明了Seowade在提取单次脑电图分类的相关时空信息方面的有效性。
艾玛·约翰逊 1* , 塔尔博特·金尼 1* , 汉娜·鲁伦 1* , 瑞安南·阿梅鲁德 2 , 黛莎·R·安德森 3 , 玛丽·安德森 2 , 阿内林·梅·安德烈斯 3 , 拉米尔·阿尔沙德 3 , 凯莉·巴宾-霍华德 3 , Dede G Barrigah 3 , Addison Beauregard 1 , Leah Beise 2 , 诺兰克里斯托弗森 3 , 伊利亚 L 大卫 3 , 卢克·德瓦德 1 , 玛雅迪亚兹 3 , 莉莉·唐纳 2 , 娜塔莉·埃林格 1 , Diellza Elmazi 3 , 莱利·恩格尔哈特 1 , Tamkanat Farheen 3 , 马克·M·菲格罗亚 3 , 索伦·弗拉顿 2 , 麦迪逊·弗拉什 1 , 伊丽莎白·冈萨雷斯 2 , 杰伦古尔斯比 4 , Estefania Guzman 3、Logan Hanson 3、John Hejl 4、Jackson Heuschel 3、Brianna Higgins 1、Brylee Hoeppner 1、Daijah Hollins 3、Josette Knutson 1、Rachel Lemont 3、Mia Lopez 1、Samantha Martin 4、Trinity May 2、Abby McDade 3、Nearyroth Men 2、Ellie Meyer 1、Caroline R Mickle 3、Sebastian Mireles 4、Avery Mize 1、Jaiden Neuhaus 1、April Ost 2、Sarah Piane 4、Makenzie Pianovski 3、Aliya Rangel 3、Jessica Reyes 4、Alexandra Ruttenberg 3、Jacob D Sachs 3、Brandon Schluns 3、Nicholas施罗德 4 , Peighton R Skrobot 3 , Cylie Smith 1 , Sydney Stout 1 , Andrew Valenzuela 1 , Kaiden P Vinavich 3 , Amber K Weaver 3 , Michael Yager 3 , Jose Zaragoza 4 , Gabriela Zawadzki 3 , Weam El Rahmany 3 , Nicole L. Scheuermann 3 , Hemin P Shah 3、Kayla L Bieser 5、Paula Croonquist 2、Olivier Devergne 3、Elizabeth E Taylor 3、Jacqueline K Wittke-Thompson 4、Jacob D Kagey 6§、Stephanie Toering Peters 1
核苷酸切除DNA修复(NER)去除各种基因组病变。ner可以通过两种不同的途径启动:全局基因组修复(GG-NER)和转录耦合修复(TC-NER)。随后两种途径都将涉及转录因子IIH(TFIIH)复合物和中央支架蛋白XPA募集的通用途径汇入,该途径可实现完整的复合体组装。尽管认为损害识别后的下游步骤是相同的,但我们确定了XPA中相关的疾病突变,该突变严重削弱了与TFIIH复合物的相互作用,从而使TC-NER受到比GG-NER更大的影响。对GG-NER和TC-NER的这种差异影响提出了从病变识别到NER两种途径的双重切口的过渡中意外的机械差异。
CRISPR-Cas 系统可通过非同源末端连接 (NHEJ) 基因破坏突变等位基因来治疗常染色体显性遗传病。然而,目前的 CRISPR-Cas 系统无法将许多单核苷酸突变与野生型等位基因区分开来。在这里,我们对六种 Cas12j 核酸酶进行了功能性筛选,并确定 Cas12j-8 是一种具有超紧凑尺寸的理想基因组编辑器。Cas12j-8 表现出与 AsCas12a 和 Un1Cas12f1 相当的活性。Cas12j-8 是一种高度特异性的核酸酶,对原间隔区相邻基序 (PAM) - 近端区域中的单核苷酸错配敏感。我们通过实验证明 Cas12j-8 能够对具有单核苷酸多态性 (SNP) 的基因进行等位基因特异性破坏。Cas12j-8 识别简单的 TTN PAM,可提供高靶位点密度。计算机模拟分析显示,Cas12j-8 能够对 ClinVar 数据库中的 25,931 个临床相关变异和 dbSNP 数据库中的 485,130,147 个 SNP 进行等位基因特异性破坏。因此,Cas12j-8 特别适合用于治疗应用。
基因组编辑工具极大地促进了通过靶向诱变对目标基因进行功能分析。现在有许多可用的基因组编辑工具,包括不同的位点特异性核酸酶和允许在给定位点引入单核苷酸多态性 (SNP) 的编辑器数据库。这些工具可用于在给定基因座产生高等位基因多样性,以促进基因功能研究,包括检查特定蛋白质结构域或单个氨基酸的作用。我们比较了我们的 LbCPF1、SpCAS9 和碱基编辑器 (BECAS9) 构建体对 OsCAO1 基因产生的效果、效率和突变类型。SpCAS9 和 LbCPF1 在产生突变方面具有相似的效率,但在诱导的突变类型上有所不同,对于 SpCAS9 和 LbCPF1,大多数变化分别是单核苷酸插入和短缺失。杂合子的比例也不同,在我们的 LbCPF1 中占大多数,而使用 SpCAS9,我们获得了大量双等位基因突变体。最后,我们证明了使用 BECAS9 可以特异性地引入终止密码子,可接受的效率约为 20%。基于这些结果,可以根据希望引入的突变类型在这三种替代方案中进行合理的选择,这三种系统是互补的。SpCAS9 仍然是在初级转化体中产生 KO 突变的最佳选择,而如果所需的基因突变干扰再生或生存能力,则将优先使用我们的 LbCPF1 构造,因为它主要产生杂合子。其他研究已将 LbCPF1 描述为在产生纯合和双等位基因突变方面与 SpCAS9 一样有效。未来仍有待澄清,不同的 LbCFP1 构造是否具有不同的效率并确定这些差异的来源。最后,如果希望专门引入终止密码子,BECAS9 是一种可行且有效的替代方案,尽管它在创建 KO 突变方面的效率低于 SpCAS9 和 LbCPF1。
推荐引用 推荐引用 Hitti, Gabriella () “血清素转运蛋白基因的短等位基因 (SLC6A4) 增加焦虑和负面情绪状态的倾向”,PANDION:The Osprey Journal of Research and Ideas:第 5 卷:第 1 期,第 4 篇文章。可访问以下网址:https://digitalcommons.unf.edu/pandion_unf/vol5/iss1/4