高遗传负荷会对种群生存力产生负面影响,并增加对疾病和其他环境压力源的易感性。之前对南非两个非洲水牛 (Syncerus caffer) 种群进行的微卫星研究表明,由于有害等位基因的高频率出现,全基因组遗传负荷很大。本研究评估了这些等位基因在大部分水牛分布范围内的出现情况,它们对雄性身体状况和牛结核病抗性产生负面影响。利用来自 34 个地方(从南纬 25 度到北纬 5 度)1,676 头动物的现有微卫星数据(2-17 个微卫星位点),我们发现了与上述雄性特征相关的整个大陆的微卫星等位基因频率梯度。频率在从南到北的纬度范围内下降(每个位点的平均 Pearson r = -0.22)。频率变化与多位点杂合性变化相一致(调整后的 R 2 = 0.84),与东非相比,南部非洲的杂合性下降幅度高达 16%。此外,在五个连锁位点对上检测到了大陆范围的连锁不平衡 (LD),其特点是雄性有害性状相关等位基因之间存在较高的正位点间关联比例(0.66,95% CI:0.53,0.77)。我们的研究结果表明,早期观察到的性染色体减数分裂驱动系统驱动了大陆范围和基因组范围内的雄性有害等位基因选择,导致频率变化、搭便车效应导致的杂合性降低以及由于雄性有害等位基因在单倍型中同时出现而导致的广泛 LD。所涉及的选择压力必须很高,以防止等位基因频率谱系和单倍型因 LD 衰减而遭到破坏。由于大多数水牛种群是稳定的,这些结果表明,自然哺乳动物种群(取决于其遗传背景)可以承受较高的遗传负荷。
• 80% 的玉米基因组被打碎了,重复的逆转录病毒序列 • 去除重复序列后,数千万个单核苷酸多态性 • 广泛的结构变异(一个品种与另一个品种相比,缺少大量 DNA) • 一些性状(例如,种子颜色)由影响巨大的单个序列变异控制 • 大多数性状由数十到数千个序列变异控制,并与环境有复杂的相互作用
由于非平稳性和脑电图信号的低信噪比(低SNR)特征,实现较高的分类性能是具有挑战性的。空间过滤通常用于改善SNR,但通常会忽略潜在的时间或频率信息中的个体差异。本文通过正交小波分解研究了运动图像信号,通过该分解,原始信号被分解为多个无关的子带分量。此外,通过加权渠道频谱过滤量滤波器进行过滤,并通过空间过滤共同实施,以提高EEG信号的可区分性,并具有嵌入在目标函数中的l 2-NORM正规化术语,以解决潜在的过度处理问题。最后,使用高斯先验的稀疏贝叶斯学习应用于提取的功率特征,产生RVM分类器。SEOWADE的分类性能比几种竞争算法(CSP,FBCSP,CSSP,CSSSP和Shallow Convnet)的分类性能要好得多。通过SEOWADE优化的空间滤波器的头皮重量图在神经生理学上具有更有意义。总而言之,这些结果证明了Seowade在提取单次脑电图分类的相关时空信息方面的有效性。
许多神经肌肉疾病是由导致主导性或功能障碍病理学的主要错义突变引起的。通过药物治疗或基因增强疗法来解决这种疾病的挑战,因为这些策略可能无法消除突变蛋白或RNA的作用。因此,这些主要疾病通常严重缺乏有效的治疗方法,这些疾病通常会导致严重的残疾或死亡。通过基因编辑对主要疾病等位基因的靶向失活是一种有前途的方法,有可能通过单一治疗完全消除病理原因。在这里,我们证明了等位基因特异性CRISPR基因编辑在人类的轴突charcot-marie-tooth(CMT)疾病的模型中,挽救了由神经手机轻链基因的显性错义突变引起的病理学(NEFL,CMT,CMT类型2E)。我们利用了一种快速而有效的方法来从人类诱导的多能干细胞(IPSC)中产生源自CMT2E患者的脊柱运动神经元。患病的运动神经元在分化的早期点概括了已知的病理表型,包括神经纤维链蛋白在神经元细胞体中的异常积累。我们使用Cas9酶有选择地将患者IPSC的NEFL等位基因灭活,以在致病性N98S突变处引入移封。运动神经元显示出与在ISEGONIC控制中相当的疾病表型的改善,并具有精确的突变校正。这突出了基因编辑的潜力,作为目前不可治疗的主要神经系统疾病的疗法。我们的结果验证了等位基因基因编辑为CMT2E的一种治疗方法,并且是一种有希望的策略,以使杂合丧失功能丧失的任何基因沉默占主导地位的突变。
甘蔗是全球 80% 糖和 26% 生物乙醇的来源。然而,其复杂的多倍体基因组(2 n = 100 – 120)阻碍了作物改良。本文,我们报告了甘蔗中高效且可重复的基因打靶 (GT),通过模板介导和同源定向修复 (HDR) 实现多个等位基因的精确共编辑,修复由可编程核酸酶 CRISPR/Cas9 诱导的 DNA 双链断裂。对来自五个独立实验的 146 个独立转化植物的评估表明,靶向核苷酸替换导致 11 个品系中的乙酰乳酸合酶 (ALS) 中的靶向氨基酸替换 W574L 和 S653I,此外还有 25 个或 18 个品系中的单个靶向氨基酸替换 W574L 或 S653I。通过对克隆的长聚合酶链反应 (PCR) 扩增子进行桑格测序,证实了最多三个 ALS 拷贝/等位基因共同编辑,从而赋予除草剂耐受性。这项工作将通过有针对性的核苷酸替换将劣等等位基因转化为优等等位基因,从而实现作物改良。
许多神经肌肉疾病是由导致主导性或功能障碍病理学的主要错义突变引起的。通过药物治疗或基因增强疗法来解决这种疾病的挑战,因为这些策略可能无法消除突变蛋白或RNA的作用。因此,这些主要疾病通常严重缺乏有效的治疗方法,这些疾病通常会导致严重的残疾或死亡。通过基因编辑对主要疾病等位基因的靶向失活是一种有前途的方法,有可能通过单一治疗完全消除病理原因。在这里,我们证明了等位基因特异性CRISPR基因编辑中的轴突charcot- marie-tooth(CMT)疾病的人类模型中,挽救了由神经形丝光链基因(NEFL,CMT 2e)中主导的错义突变引起的病理学。我们利用了一种快速有效的方法来从人类诱导的多能干细胞(IPSC)产生源自CMT2E患者的脊柱运动神经元。患病的运动神经元在分化的早期点概括了已知的病理表型,包括神经丝细胞体中神经丝轻链蛋白的异常积累。我们使用Cas9酶有选择地将患者IPSC的NEFL等位基因灭活,以在致病性N98S突变处引入移封。
在模型生物中定向诱变是基因功能注释和生物医学研究的关键。尽管 CRISPR-Cas9 系统在基因编辑方面取得了技术进步,但在大型动物模型中快速有效地引入定点突变仍然是一个挑战。在这里,我们开发了一种强大而灵活的插入诱变策略,即同源性独立的靶向捕获 (HIT-trapping),它是通用的,可以有效地靶向捕获内源性目的基因,而不依赖于同源臂和胚胎干细胞。进一步优化并为 HIT-trap 供体配备位点特异性 DNA 倒置机制,可以在单个实验中一步生成可逆和条件等位基因。作为概念验证,我们成功地在原代猪成纤维细胞中为 21 种疾病相关基因创建了突变等位基因,平均敲入频率为 53.2%,比以前的方法有了很大的改进。这里提出的多功能 HIT 捕获策略有望简化突变等位基因的靶向生成,并促进猪等大型哺乳动物的大规模诱变。
背景:这项研究旨在研究中国2型糖尿病患者的甘油三酸酯 - 葡萄糖(TYG)指数(TYG)指数(DR)(DR)之间的关联。方法:在这项嵌套的病例对照研究中,所有糖尿病参与者均在2012 - 2018年期间注册了医院术,其中包括596例DR AS病例和三个匹配对照。使用早期治疗糖尿病性视网膜病变研究标准对DR进行了评估。计算TYG指数:LN(空腹血糖[mg/dl]×空腹甘油三酸酯[mg/dl]÷2)。多元逻辑回归,接收器操作特征(ROC)曲线,线性回归模型和中介分析用于探索关联。结果:DR的TYG指数较低,随着2,112名受试者的严重程度降低(P = 0.005)。已经考虑了混杂因素(性别,糖尿病的持续时间,使用抗糖尿病药物,心率,收缩压,脉搏压力,身高,体重,体重,体重指数和糖化血红蛋白),tyg Index和Any-Severity dr(或0.83,95,95,95,0.73-0.95)之间存在着显着关联。威胁性的DR(VTDR;或0.53,95%CI 0.36–0.76; P = 0.001)。ROC分析表明,TYG指数在任何严重的DR(曲线下[AUC] 0.534,p = 0.015)和VTDR(AUC 0.624,p = 0.001)中表现出显着的歧视能力。结论:TYG指数与DR的存在和严重程度有关。我们的发现表明,TYG指数可能成为评估和VTDR存在后的有用的生物标志物。关键词:糖尿病性视网膜病,甘油三酸酯 - 葡萄糖指数,2型糖尿病,基于医院的嵌套病例 - 对照研究
1。我们对Yang等人发表的MECP2基因座的结果。已通过Jaenisch(8 - 10%正确的等位基因),Yang(8%正确的等位基因)和Hatada的组(2 - 6%正确等位基因)[3]的独立实验复制。此外,多个同行评审的出版物[3-7]成功使用了此方法来创建条件敲除(CKO)小鼠(在11个基因座中有9个成功,效率为2.5%至18%)。我们注意到,CRISPR/ CAS9生成CKO小鼠的效率可能会有所不同,这可能是由于平台特征或实验条件的不同。2。Gurumurthy等人使用的条件。[1]与我们论文中使用的条件不符。Gurumurthy等人使用的CRISPR试剂的浓度。 '在MECP2基因座上的研究[1](Cas9 mRNA的10 ng/μL,SGRNA的10 ng/μL,寡核素的10 ng/μL)比Yang等人所用的 sgrNA的RNA和10 ng/μL)。 ' s实验(CAS9 100 ng/μL,SGRNA 50 ng/μL和100 ng/μL的实验)[2]和Yang等。 ' s先前[8]和以下出版物[9-12]。 众所周知,CRISPR试剂的浓度与基因组编辑效率密切相关。 3。 我们在原始论文中使用了压电驱动的合子注入方法,该方法允许以更高的浓度注入CRISPR组件。 Gurumurthy等人使用的该方法和前核注射方法之间的差异。 也可能有助于成功的利率差异。sgrNA的RNA和10 ng/μL)。 's实验(CAS9 100 ng/μL,SGRNA 50 ng/μL和100 ng/μL的实验)[2]和Yang等。 's先前[8]和以下出版物[9-12]。众所周知,CRISPR试剂的浓度与基因组编辑效率密切相关。3。我们在原始论文中使用了压电驱动的合子注入方法,该方法允许以更高的浓度注入CRISPR组件。Gurumurthy等人使用的该方法和前核注射方法之间的差异。也可能有助于成功的利率差异。
dehorning是实际去除角以保护动物和人类受伤的过程,但是该过程是昂贵,不愉快的,并且面对面对越来越多的公众审查。在遗传上占主导地位的投票(无角)的遗传选择是消除除去的需求的长期解决方案。然而,由于澳大利亚婆罗门公牛的投票数量有限,北澳大利亚牛肉人口仍然主要是有角的。最近证明了使用基因编辑来产生高遗传归档的牛的潜力。为了进一步探讨该概念,这项研究模拟了通过常规繁殖或基因编辑(每年的种子托牛公牛/年的最高1%或10%),将民意测验的等位基因渗入了热情适应的澳大利亚牛肉人群中,以对3种民意测验的配对方案,并将结果与基本的遗传选择(日本选择Index Index Index,$ Japox,$ japox)进行比较,而不是20岁。基线场景并没有显着降低20年的角等位基因频率(80%),但导致遗传增益的最快率之一(每年8.00美元)。与基线相比,传统的繁殖场景优先用于育种,无论其遗传优点如何,都显着降低了20年的角等位基因频率(30%)(30%),但导致遗传增益的速度明显较慢($ 6.70/年/年,P≤0.0.005)。需要独家使用纯合调查的公牛的交配方案,导致20年的角等位基因频率(8%),但这种常规的繁殖场景导致遗传增益率最慢(每年5.50美元)。在每种常规育种方案中添加了基因编辑,在每年的种子托牛牛犊中的最高1%或10%导致遗传增益的速度明显更快(最高$ 8.10/年,P≤0.05)。总体而言,我们的研究表明,由于澳大利亚婆罗门公牛的数量有限,对被调查的强烈选择压力对于在此