图图2.1:提供反应性当前故障响应能力的成本之间的关系说明16图3.1:MAS在各种能力水平上的MAS合规性,用于平衡故障场景27图3.2:MAS在不平衡的故障场景的各种能力水平上的MAS合规性27图3.3:图3.3图3.3:提供响应响应响应能力2. 4.短路比为2和5的网格的上升时间标准。33图3.5:从各种计算方法得出的反应电流41图D.1:短路的简化等效电路52图D.2:灌木丛中的托伦斯岛的电压53图53图D.3:短路的简化等效电路:具有多个总线的短路,多个总线53图D.4:电压隔板54:Bus 54图54图54图54图54图54图54图54图54图54图54图54图54图D.6故障D. 6 D.7:故障期间的总线电压,带有反应电流注入55图D.8:昆士兰州商业分配馈线通过电压SAG弹跳弹跳57图D.9:带有和没有反应性支撑的总线电压58图D.10:临时电压59图59图59图E.1:在POC和WTG末端的模拟反应电流,响应62
摘要 — 等离子体中的尘埃粒子由于不断吸收周围环境中的自由电子和离子而获得电荷。根据尘埃的大小和数量密度,这会显著改变局部等离子体以及全局放电特性。本文介绍了当尘埃以不同的数量密度和大小被引入等离子体时,源自氩等离子体的光发射变化以及放电电特性变化的测量结果。测量放电的电子信号(包括电极电位、电流和导数信号)可以确定复阻抗,从而确定放电等效电路的变化。将实验结果与二维尘埃等离子体流体模型的数值结果进行了比较。
........非线性网络分析 ........电路故障 ........电气故障检测 ........电路噪声 ........热噪声 ........电路模拟 ........电路综合 ........高级综合 ........集成电路综合 ........协处理器 ........计数电路 ........耦合电路 ........数字电路 ........电路拓扑 ........数字集成电路 ........数字信号处理器 ........分布参数电路 ........驱动电路 ........电子电路 ........面包板 ........中央处理单元 ........多谐振荡器 ........条板电路 ........等效电路 ........反馈 ........反馈电路 ........负反馈 ........神经反馈 ........混合集成电路 ........集成电路 ........模拟集成电路 ........模拟-数字集成电路 ........专用集成电路 ........CMOS集成电路 ........协处理器 ........电流模式电路............数字集成电路............FET集成电路............现场可编程门阵列............混合集成电路............集成电路互连............集成电路建模............集成电路噪声............集成电路合成............大规模集成............MESFET集成电路
摘要:全金属 3D 打印技术可以为不同应用构思新结构。本文探讨了首次采用全金属 3D 单元格拓扑结构执行宽角度阻抗匹配层的潜力。推导出一种针对斜入射的新等效电路,可以很好地估计线性极化辐射场主扫描平面内扫描范围(θ = [0 ◦, 55 ◦])的单元响应。该分析模型随后用于开发通用天线的宽角度阻抗匹配设计方法。该方法已在实践中测试,以匹配 18 GHz 的金属喇叭制成的相控阵。在 H 平面的角度 θ > 35 ◦ 的模拟中获得了 5 dB 的改善。
在本文中,基于离子电活性聚合物(IEAP)的三层微型激活器的电响应考虑了在微实施行为中出现的某些现象。分析了对充电和排放过程中测得的电流的详细研究。研究了简化的等效电路的电荷,时间构成,电容和电阻。结果表明,微型演员表现出低于1 V的施加电压的线性行为。除此之外,非线性出现并与放电过程有关,尤其是以非线性方式增加的相应电阻。在此阶段,取决于先前施加的电压的累积电荷在放电过程中未完全恢复。这项研究的结果通过实验和理论结果进行了说明。
模块 3:变压器单相变压器的原理、结构和运行、等效电路、相量图、电压调节、损耗和效率测试 - 开路和短路测试、极性测试、背对背测试、磁滞和涡流损耗分离三相变压器 - 结构、连接类型及其比较特点,单相和三相变压器的并联运行,自耦变压器 - 结构、原理、应用和与双绕组变压器的比较,磁化电流,磁芯材料非线性 BH 曲线的影响,磁化电流中的谐波,相位转换 - 斯科特连接,三相到六相转换,分接变压器 - 变压器的空载和有载分接变换,三绕组变压器。变压器的冷却。
机器学习是人工智能的一种特定应用,它允许计算机通过一系列算法从数据和经验中学习和改进,而无需重新编程。在储能领域,机器学习最近成为一种很有前途的建模方法,用于确定电池的充电状态、健康状态和剩余使用寿命。在这篇综述中,我们首先讨论文献中用于电池状态预测的两种研究最多的电池模型:等效电路和基于物理的模型。基于这些模型目前的局限性,我们展示了各种机器学习技术在快速准确地预测电池状态方面的前景。最后,我们强调了所涉及的主要挑战,特别是在长度和时间上的精确建模、执行现场计算和高通量数据生成方面。
桌面仿真。Simulink 中的桌面仿真使您能够验证 BMS 设计的功能方面,例如充电放电行为(使用单电池等效电路公式)、电子电路设计以及反馈和监督控制算法。在桌面上,使用行为模型模拟电池系统、环境和算法。例如,您可以探索主动与被动电池平衡配置和算法,以评估每种平衡方法对给定应用的适用性。您可以使用桌面仿真探索新的设计理念,并在制作硬件原型之前测试多种系统架构。您还可以在桌面仿真中执行需求测试,例如通过验证在检测到隔离故障时接触器是否无法打开或关闭。
摘要 本工作提出了一种新方法来优化分布式量子电路 (DQC) 中的隐形传态成本。为了克服将大量量子比特保持相邻的困难,DQC 作为一种众所周知的解决方案一直被使用。在分布式量子系统中,量子比特通过隐形传态等量子协议从一个子系统传输到另一个子系统。首先,我们提出了一种启发式方法,通过该方法我们可以替换初始量子电路中的等效电路。然后,我们使用遗传算法对量子比特的位置进行分区,从而可以优化 DQC 通信的隐形传态次数。最后,结果表明所提出的方法可以有效地发挥作用。