在实时循环仪中进行反应。检测在 FAM 通道中进行,每 15 秒获取一次数据。• 设计预测熔化温度约为 60°C 的引物。• 用水或 TE 缓冲液制备 10X 引物混合物,例如,用于 LAMP:
1泰国清迈50200的清迈大学健康科学研究所; sayamon.ho@cmu.ac.th 2 Lucent International合作,合作医学科学学院,Chiang Mai University,Chiang Mai 50200,泰国; nangkhamkjing_nang@cmu.ac.th(N.K.-K。); nuttadap@uw.edu(n.p。); nicole.ngo-giang-huong2@ird.fr(N.N.-G.-H。)3医学技术系,泰国清迈50200的恰格·梅大学相关医学科学系; piyagorn.m@gmail.com(p.m.); wannaporn.d@cmu.ac.th(W.D.); nuntita.nan@gmail.com(n.k。); jaiyapan@gmail.com(N.J。)4泰国Phayao 56000 Phayao大学医学科学学院; nongaon00366@gmail.com 5美国华盛顿州西雅图市华盛顿大学生物工程系98195; klinee@uw.edu 6 Department of Global Health, University of Washington, Seattle, WA 98195, USA 7 Maladies Infectieuses et Vecteurs: É cologie, G é n é tique, É volution et Contr ô le (MIVEGEC), Agropolis University Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le développement(IRD),34394蒙彼利埃,法国8国际联合实验室Presto,Chiang Mai 50200,泰国 *通信:woottichai.k@cmu.ac.ac.th
摘要 - 基于SAC的合金是最常见的焊料材料之一,用于在电子组件和印刷电路板之间提供机械支撑和电气连接。增强焊接接头的机械性能可以改善组件的寿命。定义焊料关节完整性的机械性能之一是剪切强度。这项研究的主要目的是评估不同衰老条件下SAC305焊接接头的剪切强度行为。Instron 5948带有定制纤维的微机械测试仪用于对单个焊接接头进行加速剪切测试。在不同的衰老时间(2、10、100和1,000 h)和不同的衰老温度(50、100和150 C)的情况下,以恒定应变率调查了SAC305 SAC305焊料焊接联合基因持续性(OSP)表面纤维。还检查了未流际焊接接头以进行比较。方差分析(ANOVA)可以确定每个参数对剪切强度的贡献。开发了一种一般的经验模型,以估算使用Arrhenius项的剪切强度作为衰老条件的函数。显微结构分析。结果揭示了f -Fintructuctintheartrenth wheatheatheating水平。随着衰老时间和温度的增加,观察到沉淀物变厚和金属间化合物(IMC)层厚度的增加。
日期 : 2020 年 8 月 18 日 作者 : Prakruth Harish 审查员 : Esmaeil Sadeghi、Cross Joseph、GKN Aerospace 和 Magnus Neiker、West 项目 : 制造业 主要领域 : 机械工程 瑞典语标题 Förstå Effekten av Isotermimmimimbehandlinegar på lmd-w byggt t-6242 学分: 120 高等教育学分 关键词 有 6242 出版商 : 西部大学工程科学系,S-461 86 尾随,瑞典 电话:+ 46 520 22 30 00 传真:+ 46 520 22 99 网站:www.hv.se
循环介导的等热扩增(LAMP)是一种新的以其等温特性,高效率,灵敏度和特异性而闻名的核酸检测方法。灯使用的4至6个引物针对所需序列的6至8个区域,从而在60至65°C之间的温度下进行扩增,并且在一个小时内最多生产10个9拷贝。可以通过各种方法(例如浊度法,荧光法和比色法)监测产品。然而,它面临着诸如非特异性扩增的风险,引物设计的挑战,对短基因序列的不适合性以及多重多路复用的困难。聚合酶和底漆设计的最新进展提高了灯反应的速度和便利性。此外,将灯与滚动圆扩增(RCA),重组酶聚合酶扩增(RPA)和CRISPR-CAS系统等技术相结合,提高了其效率。灯与各种生物传感器的组合启用了实时分析,扩大了其在护理测试(POCT)中的应用。微流体技术进一步促进了灯的自动化和小型化,从而可以同时检测多个靶标并防止污染。本评论重点介绍了LAMP的进步,重点是底漆设计,聚合酶工程及其与其他技术的集成。持续改进和将灯与互补技术的整合显着增强了其诊断能力,使其成为快速,敏感和特定的核酸检测的强大工具,并具有对医疗保健,农业和环境监测的有希望的影响。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:由黑穗病菌(Ustilaginoidea virens)引起的水稻稻曲病是世界范围内最具破坏性的水稻病害之一,它导致水稻品质和产量的严重下降。作为一种空气传播的真菌病害,水稻稻曲病的早期诊断、监测其流行和病原体的分布对于控制感染尤为重要。在本研究中,开发了一种用于U. virens检测和定量的定量环介导等温扩增(q-LAMP)方法。与定量实时PCR(q-PCR)方法相比,该方法具有更高的灵敏度和效率。所使用的UV-2组物种特异性引物是根据U. virens ustiloxins生物合成基因(NCBI登录号:BR001221.1)的独特序列设计的。q-LAMP检测方法能够在60分钟内检测到6.4孢子/mL的浓度,最佳反应温度为63.4 ◦ C。此外,当纸带上只有 9 个孢子时,q-LAMP 方法甚至可以实现准确的定量检测。建立了 U. virens 检测和定量的标准曲线线性化方程 y = − 0.2866x + 13.829(x 为扩增时间,孢子数= 10 0.65y)。在田间检测应用中,该 q-LAMP 方法比传统观察方法更准确、更灵敏。总之,本研究建立了一种强大而简便的 U. virens 监测工具,为水稻稻曲病的预测预报和管理提供了宝贵的技术支持,也为精准施用杀菌剂提供了理论依据。
一种新的实验设置成功模拟了连续处理中的中断条件,并通过连续稀释确保最小残留腐蚀抑制剂。BDA-C14模型化合物抑制剂在所有抑制剂残留物从整体中除去所有抑制剂时都没有持久性。由于接触时间较长或预腐蚀影响抑制剂解吸行为,因此在表面上的铁层形成增加。这表明碳化铁层通过减少抑制剂解吸动力学来影响抑制剂的持久性。Langmuir等温模型被证明是对抑制剂的吸附和解吸建模的有用技术。建模结果表明,持续的治疗抑制作用是根据吸附/解吸机制强烈取决于大体中CI浓度的。
1美国约翰·霍普金斯大学生物物理学系,马里兰州巴尔的摩21218,美国2霍华德·休斯医学研究所和蜂窝和分子医学的医学研究所和计划约翰·霍普金斯大学生物学,马里兰州巴尔的摩,21218,美国5 Sharp Diagnostics,1812 Ashland Avenue,Baltimore,马里兰州21205,美国6美国6儿科学院,马萨诸塞州波士顿,马萨诸塞州,美国马萨诸塞州,02115,美国,美国,美国02115 (PCR)需要热循环以熔化DNA,并进行随后的指数扩增所需的DNA合成循环。以前,我们以增强的加工性和速度设计了一种超螺旋酶,以替代酶促DNA替代这种传统的PCR熔融步骤,同时保留所需的PCR特性,例如多-KB扩增子大小以及对克隆和基因编辑结果评估的适用性。这种等温扩增方法被称为Sharp(SSB-螺旋酶辅助快速PCR),因为单链DNA结合蛋白(SSB)和超螺旋酶被添加到标准的PCR试剂中。在这里,我们表明Sharp对于PCR无法放大或产生副产物的DNA序列有效。夏普被证明能够扩增多达601个核小体定位序列的六个相同的重复序列,并最多可扩大35个相同的Ankyrin序列重复序列。我们还表明,可以使用SHARP进行扩增91%AT-含量的序列,并且可以使用单分子光学镊子实验来验证放大产品。
恒温扩增核酸检测技术因其耗时短、对扩增 设备要求低和引物探针商品化合成稳定等优势 , 在 病原快速检测技术中脱颖而出。 Piepenburg 等 [ 13 ] 参 照 T4 噬菌体 DNA 复制系统于 2006 年创建了一种新 型等温扩增技术 , 使用酶来打开双链 DNA, 该技术 称为重组酶聚合酶扩增 (Recombinase polymerase am- plification, RPA) 。随后发明的重组酶介导链置换 核酸扩增技术 (Recombinase-aid amplification, RAA) 技术原理与 RPA 类似 , 不同之处在于 RAA 的重组酶 来源于细菌或真菌 , 而 RPA 的重组酶来自 T4 噬菌 体。 2017 年 [ 14 ] 结合以上重组酶 , SHERLOCK (Specifi- chigh-sensitivity enzymatic reporter unlocking) 检测 方案问世 , 并应用于新冠病毒的检测技术开发 [ 15 ] , 该技术通过改造规律间隔成簇短回文重复序列及 其关联蛋白 (Clustered regularly interspaced short pa- lindromic repeats/CRISPR-associated proteins system, CRISPR/Cas) 系统 , 使其能够识别特定的严重急性 呼吸综合征冠状病毒 2 (Severe acute respiratory syn- drome coronavirus 2, SARS-Cov-2) 基因组片段 , 1h 就能确定检测结果 , 检测限可低至 2 amol/L 。 SHER- LOCK 技术特异和简便 , 将 SHERLOCK 与 RAA 整合 集成 , 能够凸显两者的优势 , 不仅可以实现靶标核 酸的快速扩增 ( 保留等温扩增技术的优势 ), 还增强 了检测特异性。