吸附/解吸等温线吸附等温线,Freundlich吸附等温线,归一化的E X变化等温线,BET方程;在有机表面和土壤材料的有机表面(农业系统中的效用引用)对离子的选择性和非选择性吸附。v公共溶解度平衡碳酸盐,铁X IDE和水力X,硅酸盐,磷酸铝;粘土的电化学特性(引用了农业用途的E X样本)。土壤的起源和微观形态:土壤604(2+0)
Chemical Energetics-II: Second law of thermodynamics, different statements of the law, Carnot cycle and its efficiency, Carnot theorem, Concept of entropy, entropy as a state function, entropy as a function of V & T, entropy as a function of P & T, entropy change in physical processes, third law of thermodynamics, calculation of absolute entropies of substances,free energy(G), work function(A), variation of G A带有P,V和T。反应等温线和反应等温线,Clausius-Claperyron方程和应用。
1。引言预计到2050年,世界人口将超过100亿,导致对清洁水的需求紧急升级并确保食品生产。鉴于水是人类生存的最高资源,因此工业废水排放到水体中的激增已扩大了全球水污染的重要性。在各个类别的废水中,尤其是针对染料污染的废水,这主要是由于印刷和染色工业过程的不断发展。工业领域的范围,包括纺织品,皮革,纸张,橡胶,印刷和塑料,使用了10,000多种不同的染料和颜料。这种工业化导致每年的全球合成近70万吨染料[1]。由于某些类型的固有特性,包括酸性,碱性,偶氮,重氮,蒽醌,基于分散的和金属复杂的变化,这种染料的越来越多引起了人们的关注[2,3]。这些染料中有许多染料,尤其是从苯甲胺和萘衍生的染料,表现出对人,动物和水生生物的风险构成风险的致癌和诱变属性。暴露于这些染料已与负面的健康影响有关,例如对肾脏,肝脏,脑,生殖系统和中枢神经系统的伤害以及皮肤刺激[1,4]。废水化合物的非法排放将这些挑战引起严重的环境污染。要解决染料污染的废水对人类健康和环境的有害影响,在将废水释放到
在第1章中,抗腐蚀保护的一般方面是在吸附抑制剂的帮助下进行的,呈现了确定腐蚀速度的一般方法,以及具有抗腐蚀作用的化合物的抑制效率。根据Pourbaix图讨论了腐蚀过程的热力学。第2章中涉及有机抑制剂的抗腐蚀保护过程的热力学,其中最重要的吸附等温线:Langmuir,Freundlich,Temkin,Temkin,Flory-Huggins,El Awady和Bockris-Swingels。基于吸附等温线,确定吸附常数k AD,从中获得吸附的自由能。此热力学大小是金属抑制剂相互作用强度的量度。如果∆𝐺𝐺𝐺𝐺> -20 kJ/mol,则吸附本质上是物理的,如果∆𝐺𝐺𝐺𝐺 <-40 kJ/mol,则相互作用是化学的。
图2。(a)使用GCMC模拟在87.3 K.交叉点(绿色圆圈)和通道(黄色圆圈)孔(黑色圆圈(黑色圆圈))中使用的GCMC模拟获得的PCN-224的AR吸附等温线。封闭和开放圆圈分别对应于吸附和解吸等温线。(b)从吸附发作到完整填充的不同压力,在通道(绿色)和相交(黄色)孔之间的吸附分子分布的特征快照。每个隔室中的平均分子数在每个快照下面指示。(a)中的垂直虚线表示(b)中快照的压力。框架原子颜色代码:o,红色; H,隐藏; C,灰色; n,蓝色; ZR,紫罗兰。
表面积 用户费用:电话、电子邮件 费用基础:按等温线、按样品 联系人:Orhan Talu 教授,(216) 687-3539,o.talu@csuohio.edu(点击获取专业知识) 详细描述:微电子天平,用于在受控流体(气体或蒸汽)环境中测量样品(例如聚合物、微孔固体、金属等)的重量。吸收数据(即重量变化率)直接记录在计算机上。流体环境是手动控制的。在液氮温度下进行氮等温线测量可获得固体(包括介孔、微孔和颗粒)的 BET 表面积(以及许多其他表面积方法)。 操作:该系统不是自动化的。训练有素的研究生助理或技术人员进行实验。实验方案可以根据要求进行调整。 规格:流体:无腐蚀性、无冷凝性(在环境温度下)压力范围:10
emagram(更好地提及Skewt热力学图)实际上是一个简单的XY图。x轴表示温度t和温度露点TD的值(即湿度)和y轴压力和距离单元中的高度。x轴向下倾斜,以使垂直于x的等温线向右倾斜。见图1。在真正的emagram上,x轴未表示,即灰色区域是隐藏的。仅显示等温线和等温线以及其他三种线条,我不会说这些线路不会使事情变得复杂。然后将TD的红色曲线和TD的蓝色曲线放在该图上,并像当地大气状态的快照一样,在精确的位置和力矩上构成大气的气氛。回想一下,TD是我们必须减少空气中的温度,以便在液体水中发生凝结。td可以相等(饱和态度)或小于T,但永远不会更大。在确定的高度上,T和TD之间的差异称为“扩散”。较小的是传播意味着阻尼器是空气,更多的风险有云和/或雨水。这两条曲线可以在或多或少厚的垂直部分中合并(充满水分的空气),但绝不是蓝色曲线在红色曲线的右侧。Emagram是气象学家的有用的2D幻灯片规则。,如果您在以前阅读了有关CBL(对流边界层)的信息(请参阅同一网站www.soaringmeteo.ch中的CBL)更好地理解以下文本。
摘要 本研究旨在通过高压吸附研究、吸附等温线模型拟合和优先吸附位点和结合能的 DFT 研究,深入了解氢气和二氧化碳在沸石咪唑酯骨架 ZIF-8 中的吸附。ZIF 系列金属有机骨架的稳健性引起了人们对其在气体存储和分离大规模应用中的实用性的兴趣。我们使用 DMF 作为溶剂在室温下合成 ZIF-8,并将其与典型的溶剂热合成进行了对比。使用 XRD、SEM、TG-DSC 和 N 2 吸附等温线对所得材料进行表征。对活化材料进行高压体积吸附,以分析分别高达 50 和 40 bar 的氢气和二氧化碳存储容量。 ZIF-8 在 50 bar 和 77 K 下显示最大 H 2 存储容量为 3.13 wt%,在 40 bar 和 300 K 下显示最大 CO 2 存储容量为 46 wt%。根据平衡吸附数据估算了 Unilan 吸附等温线的参数,并计算了 H 2 和 CO 2 在 ZIF-8 上的等量吸附热。使用 DFT 计算获得 H 2 和 CO 2 的优先吸附位点。根据 DFT 计算出在最优先位点的 H 2 和 CO 2 的吸附焓值分别为 -7.08 和 -25.98 kJ/mol。我们发现在 77 K 时氢的等量吸附热 (-4.68 kJ/mol) 与来自 DFT 的氢吸附焓 (-6.04 kJ/mol) 非常接近。