摘要:盐水环境经常在冷却和注入系统中发现。当钢暴露于类似的环境时,它会得到点腐蚀。为了防止这种现象,使用腐蚀抑制剂很重要。这项工作评估了羟基磷灰石作为钢的潜在腐蚀抑制剂的功效。这是该化合物在盐水环境中作为抑制剂的第一个应用。使用X射线衍射,傅立叶变换红外光谱,化学分析和SEM/EDX研究了合成的产品,以表征其性质和形态。通过电化学技术,包括固定极化曲线(PDP),开路电位(OCP)和电化学阻抗光谱(EIS),HAP在NaCl中的抑制效率是3%培养基。合成的产品是羟基磷灰石,CA/P比为1.67。电化学研究表明,HAP能够预防3%NaCl的腐蚀,当抑制剂浓度为100 ppm时,抑制效率超过91%。另外,抑制剂的类型主要与阴极混合。HAP分子的吸附与Langmuir的吸附等温线一致。另外,金属表面的SEM/EDX分析表明,在界面钢/NaCl上形成屏障膜,该膜由HAP的主要元素组成。理论方面是通过密度功能理论(DFT)和分子动力学(MD)模拟进行的。理论方法的结果(DFT和MD模拟)通过显示合成材料的抑制效率的类似趋势来证实所有实验结果,并表明HAP可以在3%NaCl中充当出色的钢抑制剂。
由于生产率高,增材制造 (AM),尤其是使用激光和金属粉末的定向能量沉积 (DED-LB/M) 对于制造具有集成功能的工具很有吸引力。本研究致力于 DED-LB/M 制造实验性马氏体时效工具钢、使用先进电子显微镜表征构建微观结构以及评估硬度性能。观察到最终构建的高可打印性和低孔隙率,对于使用 600 W 和 800 W 制造的样品,相对密度不低于 99.5%,但构建的微观结构和性能沿高度呈梯度。观察到取决于制造参数的特征硬度分布和微观结构。制造的马氏体时效钢样品的顶层具有马氏体结构,沉淀物可能在凝固过程中形成。因此,顶层在奥氏体化等温线的深度处较软。在内部区域测量到更高的硬度,这是制造材料在逐层制造过程中进行原位热处理的结果。制造过程中的热循环导致内部区域产生沉淀硬化效应。扫描和透射电子显微镜证实,在顶部和内部区域的原始材料中形成了薄膜状和圆形颗粒。然而,仅在内部区域观察到准晶纳米级 R ' 相沉淀物。制造过程中由于原位热处理而沉淀的 R ' 相的形成是内部区域测得的硬度较高 (440 – 450 HV1) 的原因。
摘要:本研究合成并表征了两种肼基喹喔啉衍生物,即(2E,3E)-2,3-二肼基-6,7-二甲基-1,2,3,4-四氢喹喔啉(QN-CH 3 )和(2E,3E)-6-氯-2,3-二肼基-1,2,3,4-四氢喹喔啉(QN-Cl)。采用电化学测试、表面分析技术(如扫描电子显微镜(SEM))以及密度泛函理论(DFT)和分子动力学(MD)模拟等各种方法测试了这些衍生物在 363 K 的 1.0 M 盐酸溶液中作为低碳钢的抑制剂的有效性。从电流-电位(IE)曲线可以看出,QN-CH 3 和 QN-Cl 均充当阴极型抑制剂,其抑制效率随浓度的增加而增加。在 10-3 M 浓度下,缓蚀效率达到最大值:QN-CH 3 为 89.07%,QN-Cl 为 87.64%。电化学阻抗谱 (EIS) 测试表明腐蚀过程由电荷转移控制。QN-CH 3 比 QN-Cl 具有更优异的性能,这归因于其分子结构的性质。此外,SEM 分析证实,肼基喹喔啉衍生物按照 Langmuir 等温线粘附在低碳钢表面,并在高温下保持其防腐性能。DFT 计算和 MD 模拟进一步深入了解了腐蚀抑制机理。关键词:肼基喹喔啉衍生物;低碳钢腐蚀抑制;电化学测量;SEM 分析;理论研究。
在海平面上改变一到两米会影响水文,生物,物理和化学状态。表面温度变化的平均年度过程,等温线线移动。主要变化发生在富含Zoobenthos的架子上。随着深度在浅区域的变化,表面波,电流,湍流和蒸发的特征也会发生变化。根据过去15年的分析结果,里海的水平降低了一米。近年来,里海的水平每年降低10厘米,由于气候变化,海面的蒸发量增加了。随着水平的降低,架子区域的体积减小。生活在货架区域的生物区域正在收缩。这对盆地的生物系统产生负面影响。里海海的水平变化改变了其体积,水表面积,海岸线配置,测深和一般所有形态学参数。里海地区的特征是许多结构和区域特征。里海沿海地区娱乐区的发展主要取决于水平制度。在150年的工具观测中,波动范围为3.8 m(从1837年的25.2 m到1977年的29 m)。在1929 - 1941年期间,水平降低了1.9 m,在1978-1996期间降低了2.5 m,这些波动导致海岸的发展发生了显着变化。由于1929 - 1941年的海平面下降,形成了沙滩。在阿塞拜疆,始于1978年的大约600公里的水平上升,造成了沿海侵蚀,洪水和沉降。
由于人类和动物的疾病治疗日常食用而导致的水生环境中药物残留物的抽象积累会导致长期影响。这项研究评估了基于聚合物的吸附剂,1,3-二氨基丙烷修饰的聚(丙烯腈 - 丙烯酸)(DAP-POLY(ACN/AA)),用于吸收多克塞环(DoxycyCycline(dox)(dox)和mefeanamic losic(mefa)的吸附剂。正如FTIR光谱和微分析结果所暗示的,聚(ACN/ AA)共聚物与DAP的化学修饰成功。SEM分析表明,与聚(ACN/AA)共聚物(133 nm)相比,修饰的共聚物具有较大的粒径,为156 nm。研究了吸附剂剂量,接触时间,pH和初始浓度对DOX和MEFA化合物吸附的影响。DIV> DOX和MEFA的动力学研究非常适合伪二级模型,化学吸附是速率控制的步骤。平衡等温线在以下顺序上具有适当性:Langmuir模型> Freundlich模型> Temkin模型。DOX和MEFA的最大吸附能力分别为210.4 mg/g和313.7 mg/g。出色的高吸附能力表明,DAP-修改的聚(ACN/ AA)共聚物是治疗吸附系统中DOX和MEFA轴承废水的潜在吸附剂。关键字:共聚物;强力霉素;等温;动力学药物;甲酸酸;聚(丙烯腈 - 丙烯酸)
摘要:该研究涉及两个基于羟基苯基二氧素基衍生物的合成和表征,即(2E,3E)-2,3-二羟基唑-6,7-二甲基-1-7-二甲基-1,2,3,3,3,4-四氢喹啉(QN-CH 3)(QN-CH 3)(QN-CH 3) (2E,3E)-6-氯-2,3-二氢1,2,3,4-四氢喹啉(QN-CL)。使用各种方法(例如电化学测试),扫描电子显微镜(SEM)等表面分析技术以及密度功能理论(DFT)和分子动力学(MD)(MD)模拟,使用各种方法,将这些衍生物作为对低盐酸溶液的抑制剂的有效性。是从电流(I-E)曲线中观察到的,QN-CH 3和QN-CL均充当阴极型抑制剂,其抑制效率随浓度而提高。在10-3 m的浓度下,QN-CH 3的抑制效率最高为89.07%,而QN-CL的抑制效率为87.64%。电化学阻抗光谱(EIS)测试指向通过电荷转移控制的腐蚀过程。与QN-CL相比,QN-CH 3的出色性能归因于其分子结构的性质。此外,发现根据Langmuir等温线,基于羟基苯二氧甲氧氨基衍生物粘附在碳钢表面上,并在高温下保持其抗腐蚀性能,如SEM分析所证实。DFT计算和MD模拟提供了对腐蚀抑制机制的进一步了解。关键字:基于羟基苯二氧甲素衍生物;碳钢腐蚀抑制;电化学测量; SEM分析;理论研究。
在这项研究中,探索了由RGO,Fe 3 O 4和ZRO 2 NP组成的三元纳米复合材料的合成和表征。纳米复合材料可能有助于从水溶液中去除Terasil Black Dye,在这种情况下对纺织业非常重要。纳米复合材料是通过共沉淀法合成的,并与ZRO 2 NP进行了物理键合。X射线衍射(XRD),场发射扫描电子显微镜(FESEM)和能量分散X射线(EDX)分析用于揭示纳米复合材料的结构特性,表面形态和元素组成。从这些信号中,可以推断出存在一个无定形相,如各种晶格平面的强峰位置所示。FESEM图像显示出不规则的粒子形状,并注意到聚集。EDX分析已被用来确认存在成分元素的存在。Giles所说的吸附等温线显示了S形,这意味着染料离子垂直于纳米复合材料的表面。在这些放热吸附过程中,物理较高的体温占优势。此过程遵循Freundlich等温模型,表明在分析吸附数据后存在异质表面积。在此模型中,建议进行化学和物理吸附,随着温度范围的相对贡献的变化而发生。这些发现对RGO /FE 3 O 4 /ZRO 2纳米复合材料具有重要意义,以进行废水处理优化,因为它们阐明了这些材料上染料吸附的动力学和热力学。
摘要:通过橙(柑橘Sinensis)种子提取物抑制铝在2 M盐酸溶液中腐蚀的抑制作用,已经通过体重减轻,温度和氢进化方法研究了。从减肥测量结果中获得的结果表明,西梭菌表现出良好的腐蚀抑制作用,因为它大大降低了盐酸溶液中铝的腐蚀速率,在30°C下,在5 g/L提取物浓度下达到了82.69%的最高抑制效率。随着温度从30°C增加到40°C,抑制效率的提高。通过温度测定方法对数据进行分析表明,在提取物相对于空白的情况下,反应数量降低。在5 g/L提取物浓度下,获得的最高抑制效率为69.9%。与空白相比,在提取物存在下,在腐蚀过程中从腐蚀过程中进化而来的氢气体积急剧减少。该方法记录的最高抑制效率在30°C下为5 g/L提取物浓度为89.80%。sinensis种子提取物的腐蚀抑制特性可以归因于植物化学物质的存在,植物化学物质吸附在金属表面上,并通过侵袭性离子阻止其攻击。化学吸附过程,用于吸附丝酵母提取物上铝表面。在铝表面上吸附在铝表面上,遵守兰木尔的吸附等温线。
大学,P.O.Box 133,14000 Kenitra,摩洛哥收到了2015年1月28日,2016年1月14日修订,2016年1月22日接受 *通讯作者:电子邮件:gouri_mustapha@yahoo.fr,电话。:+212 6 65 04 88 21,传真:+212 5 35 60 05 88抽象新的环环磷酸,即抗丙二醇环旋二苯二酚(HPGCP)的hexa丙烯乙二醇(HPGCP)是对1 m HCl contery profe rone的碳腐蚀的抑制作用,这是一种抑制作用,这是较高的较高含量的室内温度,这是在1 m hcl provers profeers proce rone profe in Coll ost in concl conter in conter conters conters conters conters conters conters in the室温度损失,电力动力学极化曲线和电化学阻抗光谱(EIS)方法。基本溶液中Hexa乙二醇环磷酸(HPGCP)的溶解度结果。使用光谱技术(FTIR)表征化合物。结果表明,所研究的HEXA丙烯乙二醇环旋苯二苯甲烯(HPGCP)是1 M HCL培养基中碳钢良好的腐蚀抑制剂,其抑制效率随抑制剂浓度而增加。极化研究表明,两种研究的抑制剂在1 M HCl中都是阳极型抑制剂。碳钢表面上的抑制剂吸附,遵守Langmuir的吸附等温线。扫描电子显微镜(SEM)并讨论了未抑制和抑制的碳钢样品的表面研究。关键字:环磷酸,腐蚀抑制剂,HPGCP,电化学阻抗。1。简介
我们对非磁性Skutterudite相关的Y 5 RH 6 SN 18超导体进行了系统研究,其中连贯长度尺度上的晶格疾病搭配搭配竞争越来越多,并产生了非均匀的,高温的超导相位,具有无序的增强型临界温度t。我们以前已经讨论过局部原子障碍的各种可能性。可能性之一是兴奋剂。我们目前的研究集中于Y 5 -δ的系列(RH 5。5 m 0。5)sn 18化合物(δ≪1),其中掺杂剂m = co,ir,ru和pd,当它们较小(CO)或大于RH时,它们比关键的firderd h c 2产生峰值效应。这种现象在AC敏感性的真实和虚构部分中表现为弱峰,并且在磁性方面更为明显。使用一个简单的理论模型,我们证明了该机制的有效性不仅取决于掺杂剂和宿主原子的差异的大小,还取决于掺杂剂是否较小还是更大。该预测与我们的实验数据之间的一致性强烈支持观察到的峰值效应的基于杂质的方案。磁磁性等温线(M = ir和ru),M的半径与R rh显示非常相似,但是,较弱的峰效应样行为,这主要是由于Y位点的空位δ,而相应的敏感性等距在H〜H C 2处显示出不同的峰值。我们还报告了y 5 rh 6 sn 18用PD和Co.这种依赖性χAC异常在本质上与峰值效应相似。但是,它不能归因于固定,并且似乎是系统的平衡属性。