沉积 (RPCVD) 系统以尽量减少表面损伤。起始表面是二氢化物和一氢化物终止的组合。ALE 实验周期包括用等离子体中的氦离子轰击基底 1-3 分钟以使其解吸,然后在无等离子体激发的情况下,在一定分压范围(1&- 7 Torr 至 1.67 mTorr)、温度范围(250 0 C-400 0 C)和时间范围(20 秒至 3 分钟)内用乙硅烷对表面进行剂量控制,以自限制方式将 Si2H6 吸附在轰击产生的裸露表面 Si 原子上,形成硅基 (SiH3) 物种,从而形成氢终止表面。在 3 分钟的轰击周期内,获得的最大生长量为每周期 0.44 个单层。随着轰击周期时间的减少,每周期的生长量减少,表明氢去除的百分比随着轰击时间的增加而减少。
建筑部门在所有部门的运营能源消耗和温室气体排放中的份额最高。许多国家设定的环境目标迫使需要改善现有建筑股票的环境足迹。建筑改造被认为是该方向的最有希望的解决方案之一。在本文中,提出了用于评估必要的建筑包络和能源系统改造的替代模型。人工神经网络被利用以建立此模型,以在准确性和计算成本之间取得良好的平衡。对所提出的模型进行了培训和测试,用于瑞士苏黎世市的案例研究,并将其与使用构建模拟和优化工具的建筑改造最先进的模型之一进行了比较。替代模型在较小的输入集上运行,而推导改造溶液所需的时间从3.5分钟减少到16.4μsec。结果表明,所提出的模型可以显着降低计算成本,而无需大多数改造维度的误差准确性。例如,改装成本和能源系统SE部门的平均精度为r 2 = 0。9408和F 1得分= 0。9450。最后,重要的是,这种替代改造模型可以有效地用于宽面积的自下而上的改造分析,并有助于加速采用改造措施。
类型的人造功能材料用于水纯化,生物传感,光电塔克斯甚至抗病毒过滤。[7-10]人造物质中淀粉样蛋白原纤维的潜力可以通过形成各向异性组件的能力进一步富集。与许多其他类似棒状的胶体颗粒一样,淀粉样蛋白原纤维的水悬浮液可以自组装成具有远距离定向排序的相位,即由熵驱动的液晶(LCS)。[11-14]除了没有位置排序的常见列表外,原纤维的固有手性还导致纤维化相位,并通过控制原纤维的长度分布和限制,并通过控制原纤维的螺旋扭曲对齐。[15,16]这些有序的状态导致中曲科中原纤维组件的机械,流变和光学性质各向异性,但是,在官能材料的制造中,尚未充分利用这一充分的优势。[7,8]
要克服常规调节器的带宽限制,可以采用等离子设备。等离子调节剂已显示可运行高达500 GHz [8],因此是用于此类高宽宽应用的理想解决方案。最近通过微环谐振器调制器(MRR)[9]和高达363 GBIT/s的净数据速率(MACH-ZEHNDER调制器(MZM)[10])已被证明。这些等离子调节剂基于硅光子(SIPH)平台,因此可以无缝地集成到标准的SIPH过程中以进行整体整合。这有望通过共包装[11],启用小占地面积[12]和低驾驶电压[13]来进一步改进,这是400 Gbit/s tranceivers的理想候选者。然而,单个载体IM/DD演示仍缺少血浆以上的血浆以上。
1。H. T. Chen,J。Padilla,J。M. O. Zide,A。C. Gossard,A。J. J. J. J. J. 2。 Express 17(2),819–827(2009)。 3。 H. T. Chen,J。F。O'Hara,Azad,A。J. J. 光子学2(5),295–298(2008)。 4。 W. J. J. Patilla,A。J。Jt.Strete,M。Lee和R. D. Averitt, 修订版 Lett。 96(10),107401(2006)。 5。 N.-H. Shen,M。Massauti,M。Gokkavas,J.-M。 Manceau,E。Ozbay,M。Kafesaki,T. 修订版 Lett。 106(3),037403(2011)。 6。 Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。H. T. Chen,J。Padilla,J。M. O. Zide,A。C. Gossard,A。J. J. J. J. J.2。Express 17(2),819–827(2009)。3。H. T. Chen,J。F。O'Hara,Azad,A。J. J. 光子学2(5),295–298(2008)。 4。 W. J. J. Patilla,A。J。Jt.Strete,M。Lee和R. D. Averitt, 修订版 Lett。 96(10),107401(2006)。 5。 N.-H. Shen,M。Massauti,M。Gokkavas,J.-M。 Manceau,E。Ozbay,M。Kafesaki,T. 修订版 Lett。 106(3),037403(2011)。 6。 Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。H. T. Chen,J。F。O'Hara,Azad,A。J. J.光子学2(5),295–298(2008)。4。W. J. J. Patilla,A。J。Jt.Strete,M。Lee和R. D. Averitt,修订版Lett。 96(10),107401(2006)。 5。 N.-H. Shen,M。Massauti,M。Gokkavas,J.-M。 Manceau,E。Ozbay,M。Kafesaki,T. 修订版 Lett。 106(3),037403(2011)。 6。 Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。Lett。96(10),107401(2006)。5。N.-H. Shen,M。Massauti,M。Gokkavas,J.-M。 Manceau,E。Ozbay,M。Kafesaki,T. 修订版 Lett。 106(3),037403(2011)。 6。 Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。N.-H. Shen,M。Massauti,M。Gokkavas,J.-M。 Manceau,E。Ozbay,M。Kafesaki,T.修订版Lett。 106(3),037403(2011)。 6。 Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。Lett。106(3),037403(2011)。6。Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang, Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。Z. Tian,R。 Singh,J。Ha,J。Gu,Q. Xing,J。Wu和W. Zhang,Lett。 35(21),3586–3588(2010)。 7。 H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt, 修订版 Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。Lett。35(21),3586–3588(2010)。7。H. Tao,A。C. Strait,K。Fan,W。J. Patilla,X。Zhang和R. D. Averitt,修订版Lett。 103(14),147401(2009)。 8。 Express 18(13),13425–13430(2010)。Lett。103(14),147401(2009)。8。Express 18(13),13425–13430(2010)。R. Singh,E。Plum,W。Zhang和N. I. 9。 T. Driscoll,H.-T。 Kim,B.-G。 Chae,B.-J。 Kim,Y.-W。 Lee,N。M. Jokerst,S。Palit,D。R. Smith,M。Di Ventra和D. N. Basov,“记忆超材料”,《科学》 325(5947),1518-1521(2009)。 10。 J. Han和A. Lakhtakia,“可热可调的Terahertz超植物的半导体拆分谐振器”,J。Mod。 选择。 56(4),554–557(2009)。 11。 J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。 物理。 Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。R. Singh,E。Plum,W。Zhang和N. I.9。T. Driscoll,H.-T。 Kim,B.-G。 Chae,B.-J。 Kim,Y.-W。 Lee,N。M. Jokerst,S。Palit,D。R. Smith,M。Di Ventra和D. N. Basov,“记忆超材料”,《科学》 325(5947),1518-1521(2009)。 10。 J. Han和A. Lakhtakia,“可热可调的Terahertz超植物的半导体拆分谐振器”,J。Mod。 选择。 56(4),554–557(2009)。 11。 J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。 物理。 Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。T. Driscoll,H.-T。 Kim,B.-G。 Chae,B.-J。Kim,Y.-W。 Lee,N。M. Jokerst,S。Palit,D。R. Smith,M。Di Ventra和D. N. Basov,“记忆超材料”,《科学》 325(5947),1518-1521(2009)。 10。 J. Han和A. Lakhtakia,“可热可调的Terahertz超植物的半导体拆分谐振器”,J。Mod。 选择。 56(4),554–557(2009)。 11。 J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。 物理。 Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。Kim,Y.-W。 Lee,N。M. Jokerst,S。Palit,D。R. Smith,M。Di Ventra和D. N. Basov,“记忆超材料”,《科学》 325(5947),1518-1521(2009)。10。J. Han和A. Lakhtakia,“可热可调的Terahertz超植物的半导体拆分谐振器”,J。Mod。选择。56(4),554–557(2009)。 11。 J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。 物理。 Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。56(4),554–557(2009)。11。J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。 物理。 Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。J. Gu,R。Singh,Z。Tian,W。Cao,Q. Xing,M。He,J。W。Zhang,J。Han,H.-T。 Chen和W. Zhang,“ Terahertz超导体超材料”,Appl。物理。Lett。 97(7),071102(2010)。 12。 R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。Lett。97(7),071102(2010)。12。R. Singh,I。 A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W. 物理。 Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。R. Singh,I。A. I. Al-Naib,Y. Yang,D。RoyChowdhury,W。Cao,C。Rockstuhl,T。Ozaki,R。Morandotti和W.物理。Lett。 99(20),201107(2011)。 13。 H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,” 修订版 Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。Lett。99(20),201107(2011)。13。H. T. Chen,H。Yang,R。Singh,J。F. O'Hara,A。K. Azad,S。A. Trugman,Q。X. Jia和A. J. Taylor,“调整高温超导向超过的共鸣Terahertz Metamatametials中的共鸣,”修订版Lett。 105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。Lett。105(24),247402(2010)。 14。 B. B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。105(24),247402(2010)。14。B.B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J. B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。 Express 18(16),17504– 17509(2010)。B. Jin,C。H。Zhang,S。Engelbrecht,A。Pimenov,J.B. Wu,Q. Y. Xu,C。H. Cao,J。Chen,W。W. Xu,L。Kang和P. H. Wu,“低损失和磁场可触及的超导超导Terahertz-Metamaterial”,Opt。Express 18(16),17504– 17509(2010)。
这项测试是开发的,其性能特征由ARUP实验室确定。尚未获得美国食品药品监督管理局的清理或批准。该测试是在CLIA认证的实验室进行的,旨在用于临床目的。
©2021 Elsevier。根据创意共享归因于noncmercial- noderivatives 4.0国际许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/),允许在任何媒介中适当地被列入工作,允许在任何媒介中进行不受限制的,非商业用途,分发和复制。
1。全球对痴呆症2017- 2025年公共卫生响应的行动计划。世界卫生组织; 2017。许可证:CC BY-NC-SA 3.0 Igo。2。Jack CR,Bennett DA,Blennow K等。 NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。 阿尔茨海默氏症痴呆症。 2018; 14:535-562。 https://doi.org/10.1016/j.jalz.2018.02。 018。 3。 PalmQvist S,Insel PS,Stomrud E等。 脑脊液和血浆生物标志物轨迹随着阿尔茨海默氏病的增加而增加。 embo mol Med。 2019; 11:E11170。 4。 lleóA,Irwin DJ,Illán-Gala I等。 一种2步脑脊算法,用于选择额颞叶变性亚型。 JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈Jack CR,Bennett DA,Blennow K等。NIA-AA研究框架:迈向对阿尔茨海默氏病的生物学定义。阿尔茨海默氏症痴呆症。2018; 14:535-562。 https://doi.org/10.1016/j.jalz.2018.02。 018。 3。 PalmQvist S,Insel PS,Stomrud E等。 脑脊液和血浆生物标志物轨迹随着阿尔茨海默氏病的增加而增加。 embo mol Med。 2019; 11:E11170。 4。 lleóA,Irwin DJ,Illán-Gala I等。 一种2步脑脊算法,用于选择额颞叶变性亚型。 JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈2018; 14:535-562。 https://doi.org/10.1016/j.jalz.2018.02。018。3。PalmQvist S,Insel PS,Stomrud E等。脑脊液和血浆生物标志物轨迹随着阿尔茨海默氏病的增加而增加。embo mol Med。2019; 11:E11170。 4。 lleóA,Irwin DJ,Illán-Gala I等。 一种2步脑脊算法,用于选择额颞叶变性亚型。 JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈2019; 11:E11170。4。lleóA,Irwin DJ,Illán-Gala I等。一种2步脑脊算法,用于选择额颞叶变性亚型。JAMA NEUROL。 2018; 75:738-745。 5。 de Meyer S,Schaeverbeke JM,Verberk IMW等。 比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。 阿尔茨海默氏症。 2020; 12:162。 6。 Chatterjee P,Pedrini S,Stoops E等。 血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。 翻译精神病学。 2021; 11。 7。 Verberk IMW,Thijssen E,Koelewijn J等。 血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈JAMA NEUROL。2018; 75:738-745。5。de Meyer S,Schaeverbeke JM,Verberk IMW等。比较基于ELISA和SIMOA的基于血浆Abeta比率的定量,以早期检测到脑淀粉样变性。阿尔茨海默氏症。2020; 12:162。6。Chatterjee P,Pedrini S,Stoops E等。血浆胶质纤维酸性蛋白在认知正常的老年人中升高,患有阿尔茨海默氏病风险。翻译精神病学。2021; 11。7。Verberk IMW,Thijssen E,Koelewijn J等。血浆淀粉样β(1-42/1-40)和神经胶质纤维酸性蛋白的组合强烈
1。广东省级医学诊断省主要实验室实验室医学诊断,快速诊断生物传感器,广东省级诊断生物传感器的工程和技术研究中心,广东省级单细胞技术和应用主要实验室,南方医学院,南部医学院,广州南部医学院,广州,510515,中国。2。脑部疾病机构,南方医院,南科尔大学,广东,广东,510515,中国。3。约翰·霍普金斯大学医学院分子与比较病理生物学系,美国马里兰州马里兰州。4。中国广州南科医学院Nanfang医院神经外科系。 5。 神经外科中心,国家关键临床专业,中国工程技术研究中心关于脑血管疾病诊断和治疗,广东省脑功能修复和再生的关键实验室,脑血管疾病,脑血管疾病,脑功能修复和再生,神经外科研究所,广东省南部医学院,南部医学院,北部医学院。中国广州南科医学院Nanfang医院神经外科系。5。神经外科中心,国家关键临床专业,中国工程技术研究中心关于脑血管疾病诊断和治疗,广东省脑功能修复和再生的关键实验室,脑血管疾病,脑血管疾病,脑功能修复和再生,神经外科研究所,广东省南部医学院,南部医学院,北部医学院。
全局:模拟整个Tokamak + Full-F:多尺度物理多离子物种主要离子 /杂质电子:绝热;被困动力学;完全动力学新古典和湍流传输之间的线性化碰撞操作员协同作用浸入边界条件:Sol -like和Limiter [Caschera 18,Dif -Pradalier 22]磁性ripple [Varennes PRL 22,ppcf,ppcf 23]