在过去的十年中,单晶钻石(SCD)生长的显着技术进步导致了高质量SCD底物的商业产品,通常以尺寸的几个平方毫米的良好特定板的形式获得[1]。同时,此类板的成本已大大降低[2],这引发了重要的研发工作,旨在利用SCD的特性[3],热[4]和机械性能[5] [5]用于电子学中的各种应用[6],光(光(光环)[7-10],光学和光学技术[11] [11] [11] [11] [11] [11] [11] [11])[11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11]。高质量的SCD板是通过化学蒸气沉积(CVD)[13,14]或高压高温(HPHT)[15]技术生长的。记录示范最近产生的SCD底物直径为10 cm [16],但如今更典型的尺寸为1 mm – 10 mm,厚度为50μm -1 mm。基板以不同的“等级”类别提供(例如电子[6,17],光学[18]或机械[19])根据其杂质的程度,这表明底物性质已被遗忘,特别适合特定的应用区域。SCD的精确成型主要是使用激光切割和烧蚀技术以毫米尺度的目标维度进行的,具有几微米的精确性要求,例如切片钻石板或制造切割工具,用于转弯,敷料或铣削。微丝[41-47]和光栅[48,49])和光子学(例如用于耦合器[50-54]和谐振器[52,55-59])。激光处理也用于千分尺尺度的结构,例如复合折射率[20-23],埋入的波导[24-26]和微通道[27,28]。离子束蚀刻(IBE)可以有效地平滑并抛光SCD板[29,30],而聚焦的离子束(FIB)铣削已用于制造悬浮的结构[31-33],砧[34,35]和固体膜片[36-38]。尽管这些图案技术对于一组特定形状和设备最有效,但基于反应性离子蚀刻(RIE)制造方法是最常用的方法,用于广泛的应用,需要亚微米精度[39,40],例如微观典型(例如,与Rie相比