简介 等速运动是一种允许肌肉在整个关节运动范围内最大程度收缩的运动形式。等速运动器械是一种用于医疗目的的康复锻炼设备,例如测量、评估和增加肌肉力量和关节活动范围。本次审查由芙蓉 Tuanku Jaafar 医院的一位高级理疗师要求进行。 目的/目标 评估等速运动器械对肌肉骨骼疾病康复的安全性、有效性、成本效益和组织影响。 结果与结论 使用等速运动器械可能会提高健康成年人的肌肉力量,但对中风患者则无效。证据还表明,等速运动器械是测量等速肌肉性能的可靠工具,能够更客观地评估肌肉力量,但可能与手动测试不一致。关于等速运动器械安全性的证据不足。此外,这种机器价格昂贵。 建议 等速运动器械可用于客观评估肌肉力量,并可提高健康成年人的肌肉力量。然而,在决定采购该设备之前,除了可能需要在操作机器之前对用户进行培训之外,还应考虑到安装机器所需的高成本和大面积。方法通过电子数据库搜索文献,包括 Medline、Cochrane Library、Science Direct 和 Google 和 Yahoo 等通用数据库。搜索策略使用以下术语,这些术语可以单独使用或以各种组合使用:“等速运动机”、“等速测力计”、“等速设备”、“等速机器”、“等速设备”、“肌肉骨骼疾病”、物理治疗和康复。搜索仅限于关于人类的文章。搜索没有语言限制。包括与等速运动机的有效性、安全性和成本效益有关的系统评价、荟萃分析和随机临床试验。
本研究旨在评估使用最新一代等速测力计进行的躯干肌肉力量测试的有效性和重测信度。在 15 名健康受试者中测量了躯干屈肌和伸肌的离心、等长和向心峰值扭矩。肌肉横截面积 (CSA) 和表面肌电图 (EMG) 活动分别与竖脊肌和腹直肌的峰值扭矩和亚最大等长扭矩相关。在测试和重测期间确定了峰值扭矩测量的可靠性。对于所有收缩类型,肌肉 CSA 与峰值扭矩之间始终存在显著相关性(r = 0.74 � 0.85;P < 0.001),对于伸肌和屈肌,EMG 活动与亚最大等长扭矩之间也存在显著相关性(r P 0.99;P < 0.05)。组内相关系数在 0.87 和 0.95 之间,所有收缩模式的标准测量误差均低于 9%。测试和重测之间的峰值扭矩平均差异范围为 � 3.7% 至 3.7%,没有显著的平均方向偏差。总体而言,我们的研究结果证实了使用测试的躯干模块进行扭矩测量的有效性。此外,考虑到峰值扭矩测量的出色重测信度,我们得出结论,这款最新一代等速测力计可以放心用于评估躯干肌肉功能,以用于临床或运动目的。� 2014 Elsevier Ltd. 保留所有权利。
基于质谱的蛋白质组学已成为复杂生物样品中蛋白质识别和定量的既定方法,代表了该领域的金标准。在共价药物发现的领域,化学蛋白质组学已成为不可或缺的成分,因为它可以通过蛋白质组学方法通过共价配体诱导的化学修饰映射(Meissner等,2022)。这些技术的成功通过实现高通量和定量分析,彻底改变了现代药物筛查工作。本综述着重于阐明各种定量蛋白质组学技术的原理和方法,包括无标签定量,ITRAQ(用于相对和绝对定量的等速标记)和TMT(tandem质量标签)标签。此外,我们探索了这些工具在定量化学蛋白质组学中的应用,证明了它们在发现共价配体中的实用性。
水污染是当今社会的关键挑战之一。染料是抗性降解的致癌污染物,从水中清除它们的吸附性需要一些吸附剂,具有较高的吸附效率。当前的研究重点是将硫糖染料的吸附去除到氧化石墨烯 - 羧甲基纤维素 - 丙烯酰胺(go/p(cmc-co-am))纳米复合材料通过自由基共聚过程合成的纳米复合材料。批处理吸附研究是为了苦苦理解染料浓度和温度对吸附效率的影响。浓度研究和温度的数据应用于不同的等温模型和热力学研究。结果表明,Freundlich等温模型最适合吸附数据(R²= 0.9219),突出了异质吸附。此外,高温会导致降低吸附能力,从而揭示了吸附过程的放热性质。热力学上,该过程本质上是自发的和放热的,在温度范围内熵的降低。总体而言,结果显示了GO/P(CMC-CO-AM)纳米复合材料对从水吸附的Azure C染料的有效性。
我们回顾了具有等速储层的晚期绝热压缩空气存储厂的分析模型的文献,重点是可以从模型中提取的见解。审查表明,文献中缺少拥有绝热储层,绝热涡轮机械以及没有油门的植物的模型。假设植物在准稳态状态下运行,我们继续得出这种模型,可以将空气视为热量和热完美的气体,并且热能存储单元不含热和压力损失。模型导致关键性能指标的封闭式表达式,例如植物效率和体积能量密度,就组成效率和压力比而言。这些表达式的推导基于涉及温度和压力的同时时间变化的近似积分。近似值导致相对误差小于1%。模型表明压缩和扩展工作,植物效率和最高工艺温度显示最小。该模型还表明,对于给定的非二维存储容量和最大储层压力,最小化最大过程温度的植物的最大效率大约等于最大化效率的植物的最低效率。对于具有绝热洞穴和绝热热能储存单元的两阶段工厂,我们的分析模型预测体积能量密度在4.76%以内,表明它足够准确,可以用于初始植物设计。
外周神经损伤,例如上臀神经的轴突损伤,是罕见的,但髋关节置换术后可能发生的并发症。本病例报告描述了使用脂肪衍生的间充质干细胞(MSC)来治疗71岁患者上臀神经的轴突损伤。常规康复失败后,选择MSC浸润并使用超声(美国)指导进行。两个月后,患者显示出肌电图(EMG)的归一化,表明完全恢复神经,并显着改善了神经性疼痛。患者还表明,在等速评估中,右髋关节扩展期间的最大扭矩增加了55%,功率增加了9%,从而提高了肌肉强度和功能。此病例强调了MSC在促进神经再生中的潜力,表明这种方法可以加速神经恢复并改善短期临床结局。尽管结果是有希望的,但仍需要进一步的研究来确认这种治疗的疗效和安全性。这种细胞疗法和身体康复的综合模型代表了从复杂的神经损伤中恢复的重大进步。
这项研究研究了农业级(AG)培养基中的营养变化以及如何改变同胆料SP的生物量产生和二氧化碳固定能力时会发生什么。它旨在解决由于微藻问题而建立生物燃料库存的挑战。首先使用媒介物和盒子behnken实验设计在AG培养基中确定Ag培养基中氮,磷和微量营养素的最佳水平,从而改善了N,K,Ca,Ca,Mg,Fe和Z,并具有15 mm,10 mm,0.5 mm,0.5 mm,0.8 mm,0.8 mm,0.3 mm,0.3 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,0.15 mm,相应。随后,与传统的F/2培养基(1.63 GL -1)相比,在改进的AG培养基中从培养中提取的2.37 GL -1生物量在1L培养量中进行了测试,从而导致2.37 GL -1生物量。与AG培养基相比,在临时研究中进行了较高Ca和Fe测试的培养物产生了9%和7%的生物量产生。 在250升气泡起泡柱中测试了新的优化培养基,称为TNBR优化培养基(OM),在现场燃煤发电厂进行了测试 - 型号的型光生反应器,并提供了模拟和实际的烟道气体。 TNBR优化的培养基表现出更好的藻类生长,尤其是在实际的烟道气体上,这增加了CO 2的浓度。 相对于从上一报告(0.52 GCO 2 L -1天-1)获得的改进的CO 2固定率分别为0.72 GCO 2 .L -1天-1。 已经制定了一种改进的培养基来培养等速液,并且当前的工作可以进一步用于大规模培养。培养物产生了9%和7%的生物量产生。在250升气泡起泡柱中测试了新的优化培养基,称为TNBR优化培养基(OM),在现场燃煤发电厂进行了测试 - 型号的型光生反应器,并提供了模拟和实际的烟道气体。TNBR优化的培养基表现出更好的藻类生长,尤其是在实际的烟道气体上,这增加了CO 2的浓度。相对于从上一报告(0.52 GCO 2 L -1天-1)获得的改进的CO 2固定率分别为0.72 GCO 2 .L -1天-1。已经制定了一种改进的培养基来培养等速液,并且当前的工作可以进一步用于大规模培养。
基于快速LI +传导固体电解质(例如Li 7 La 3 Zr 2 O 12(LLZO))的抽象全稳态电池(LLZO)提供了对安全,不易燃率和温度耐受能量存储的透视。尽管有希望,但整个电池组件的陶瓷处理即将达到理论能力,并找到处理大规模和低成本电池电池的最佳策略仍然是一个挑战。在这里,我们解决了这些问题,并报告了由Li 4 Ti 5 O 12 / C- Li 6.25 Al 0.25 la 3 Zr 2 O 12 / Metallic Li提供的能力约70 - 75 AH / kg的固态电池电池,且可逆自行车以2.5 a / kg的速率(用于2.5 –1.0 –1.0 v,95 c,95°C)。发现,在固体电解质电极界面处能力增加和LI +转移是谷物及其连通性的紧密嵌入,可以通过细胞制备过程中的等速压力来实现。我们建议,通过确保在电解质电极界面上确保良好的谷物接触,可以在加工过程中进行简单的陶瓷处理,例如加工过程中的施加压力。在野外的石榴石型全稳态电池组件中,证明了