量子密钥分发 (QKD) 标志着安全通信领域的一大飞跃,它使用量子力学来建立高度安全的加密密钥。与依赖复杂数学问题的传统加密方法不同,QKD 通过量子粒子的物理属性(例如叠加和纠缠)来保证安全性。QKD 的主要优势之一是其内置检测传输过程中任何未经授权的拦截密钥企图的能力。窃听者的任何干扰都会改变粒子的量子态,暴露拦截企图并保护通信免受损害。本研究重点关注两个重要且经过充分研究的 QKD 协议:BB84 和 E91。BB84 协议于 1984 年推出,它传输不同量子态的单个量子比特(量子位)来生成密钥。该协议的安全性通过以下原理得到加强:测量量子系统不可避免地会干扰它,从而可以检测到潜在的窃听。同时,1991 年开发的 E91 协议使用量子纠缠,这是一种粒子即使相隔很远也能保持连接的现象。E91 协议中的纠缠态可以创建共享密钥,同时确保通过破坏量子相关性来发现任何篡改行为。该项目旨在探索和模拟软件中的 BB84 和 E91 协议,以研究这些密钥生成方法如何执行并响应模拟攻击。通过专注于计算模拟而不是物理硬件,这项研究提供了一种实用且经济高效的方法来深入研究 QKD 的工作原理。使用 ProjectQ 等量子计算工具并集成加密软件,该研究涉及密钥生成和传输过程。将测试有窃听和无窃听的场景,以分析这些协议检测未经授权的监控和维持安全通信的能力。这项工作将提供有价值的见解,了解这些量子协议如何有效地抵御新兴威胁以及它们在安全通信中的未来作用。
学生经常进入物理教室,并以深深的误解为根深蒂固,通常是由于共同的直觉和日常经历而引起的。这些误解给教育者带来了重大挑战,因为学生通常会抵抗与他们的先入为主的信息。结果,传统的结构方法通常无法解决误解。本手稿的第一个目的是总结有关大学物理学误解的现有文献。此资源供讲师审查错误概念的来源,诊断和补救策略。与大多数物理教育研究一样,大多数文献都集中在古典物理上。但是,量子物理学构成了独特的挑战,因为它的概念与日常经验和直觉相去甚远。这种唯一性表明需要询问需要解决古典物理学中误解的策略如何适用于量子物理学。由于量子技术的重要性越来越大,来自各种背景的人们的近期人士的近期涌现,即计算,密码学和材料科学等量子技术的重要性。为了帮助回答这个问题,我们对滑铁卢大学的量子物理讲师进行了深入的访谈,他们集体教授了100多个大学量子物理课程。这些访谈探讨了量子物理学,其起源和有效的结构技术来解决它们的常见误解的性质。我们重点介绍了特定的误解,例如对纠缠和旋转的误解以及成功的教学策略,包括“误解 - 陷阱测验”。我们通过访谈数据从文献综述中阐述了洞察力,概述了当前解决物理误解的最佳实践。此外,我们确定了需要进一步探索的关键研究问题,例如量子物理学中多层测试的效率和开发凝聚力的量子效果。本文旨在告知教育工作者和课程开发人员,提供实用的建议并设定研究议程,以提高经典和量子物理学的概念理解。
为了满足这些营养需求,生产者经常使用尿素和硫酸铵 (AMS) 的物理混合物。虽然物理混合物可能具有施肥者所需的营养量,但一旦撒在田地里,可能会导致营养条纹不均匀。另一种选择可能是均质混合物,包括大分子和次要营养元素,例如氮 (N)、钾 (K) 和硫酸盐-硫 (SO4-S),其中含有适合大多数土壤的最佳数量的这些营养元素。目标考虑到油菜籽与大多数作物相比具有较高的营养需求,2024 年在朗登研究推广中心进行了一项肥料试验。该试验由 UKT 芝加哥赞助。试验的目的是比较两种均质新肥料 NKS(28-0-5-6SO4-S)和 NKS(26-0-7-9SO4-S)与尿素和 AMS 等直接肥料的效果。新型肥料中的氮以铵 (NH4 + ) 和硝酸盐 (NO3 - ) 形式存在,因此与尿素不同,它们不会因氨挥发而损失。该研究采用了三种不同比率的氮、钾和硫酸盐-硫 (SO4-S),并测量了油菜籽的产量和质量。根据土壤有效磷的结果,所有处理统一施用磷。试验地点试验地点位于北达科他州兰登的 NDSU 兰登研究推广中心。处理和重复根据土壤分析结果,所有处理都采用了全比率的磷,即每英亩 72 磅,而采用尿素和 AMS 组合的直接施肥处理(T2、T3 和 T4)没有采用任何钾。但是,这些处理确实采用了等量的氮和等量或接近量的 SO4-S。由于均质肥料 NKS 28 和 NKS 26 中含有钾,因此 T5 至 T10 处理除了氮、磷和 SO4-S 外还添加了钾。此外,在 T2 至 T4 处理中,尿素以 14 毫升/10 磅的比例用脲酶抑制剂处理,所有肥料均以表面撒播的方式施用。肥料和养分类型及数量的详细信息见表 1。
中国“墨子号”卫星建立了首个洲际量子加密服务。研究人员通过在欧洲和中国之间建立安全视频会议测试了该系统。这个过程很简单。量子加密依靠所谓的一次性密码本来保证隐私。这是一组随机数(密钥),双方可以使用它来编码和解码消息。一次性密码本的问题在于确保只有选定的发送者和接收者拥有它们。这个问题可以通过使用光子等量子粒子发送密钥来解决,因为总是可以判断量子粒子是否之前被观察到。如果已经观察到,则放弃该密钥并发送另一个密钥,直到双方都确定他们拥有未被观察到的一次性密码本。量子密钥分发是量子加密的核心。双方拥有密钥(即一次性密码本)后,他们可以通过普通经典信道进行绝对安全的通信。墨子号卫星只是从轨道上分发这个密钥。由于卫星位于两极上方的太阳同步轨道上,因此它每天大致在相同的当地时间经过地球表面的各个角落。假设当卫星经过位于中国河北省北部兴隆的中国地面站时,它会使用成熟的协议将一次性密码本以单光子编码发送到地面。当地球在卫星下方旋转,奥地利格拉茨的地面站进入视野时,墨子号会将相同的一次性密码本发送到那里的接收器。这样,两个地点就拥有了相同的密钥,使它们能够通过传统链路启动完全安全的通信。实验甚至更进一步。如果目标是在北京的中国科学院和维也纳的奥地利科学院之间举行视频会议,那么密钥必须安全地分发到这两个地点。为此,研究小组使用基于地面的光纤量子通信。这样建立的视频链路由高级加密标准 (AES) 保护,该标准每秒通过 128 位种子代码刷新一次。 9 月,他们举行了一场开创性的视频会议,会议持续了 75 分钟,总数据传输量约为 2 GB。“我们展示了地球上多个地点之间的洲际量子通信,最大间隔为 7,600 公里,”由维也纳大学的 Anton Zeilinger 和中国合肥中国科学技术大学的潘建伟领导的团队表示。该系统存在一些潜在的弱点,未来有待改进。也许最重要的是,在连接两个地面站的时间内,卫星被认为是安全的。这很可能是真的——谁能入侵一颗在轨道上运行的卫星?但是,这种安全性无法得到保证。然而,研究团队表示,未来可以通过端到端量子中继来解决这一问题。各国政府、军事运营商和商业企业都渴望拥有类似的安全能力。1
样本处理 对于密苏里大学的犬类 DNA 检测,血液样本 - DNA 提取的理想样本是 3 到 7cc 的全血,装在紫色顶部 (EDTA) 试管中(一个或多个,取决于试管尺寸)。对于非常小的狗,1 到 2 cc 就足够了。请不要发送少于 1 cc 的样本。只需将血液样本放入试管中,轻轻摇晃几次以分配抗凝剂 - 不要旋转、提取血清或做任何其他事情。如果样本在发货前需要保存一段时间,请冷藏,但不要将样本保存超过 1 周,否则可能无法使用。冷冻精液 - 已故公犬或患病犬只储存的冷冻精液可作为检测 DNA 的来源。请发送大约 1 个繁殖单位。吸管或颗粒不需要冷冻运输,但请将它们装在防压防漏容器中。除常规检测费外,此样本的特殊处理费为 40 美元。组织样本 - 可以从任何富含细胞的组织中提取 DNA。如果要在狗死后进行检测,一块 1 英寸立方体(或等量)的舌头、其他主要肌肉、脾脏、肾脏或肝脏将提供大量 DNA(一块组织就足够了 - 请勿发送多块组织)。组织样本应放在有清晰标签的冷冻袋或其他无菌容器中并冷冻。请勿放入福尔马林中!将装袋的组织放入另一个袋子中,冷冻,并与冷冻冷藏袋一起运送(请勿使用干冰或放在密封袋中的冰块)。如果这是唯一的样本(没有血液样本),请在检测费中加收 40 美元的特殊处理费。样本标签应包含以下内容:狗名 - 主人姓氏(如果同时发送多只狗的样本,请对样本和表格进行编号)应填写本说明书后面的《个人狗信息表和调查表》,如有,应在样本中附上血统证明副本。所有狗均需支付 65 美元的测试费。费用可通过支票或汇票支付给“密苏里大学”或主要信用卡(Visa、MC、AmEx、Discover)。运送 - 理想情况下,血液样本应立即运送,组织应先冷冻。如果样本保存几天或周末,血液必须冷藏,组织样本必须保持冷冻。次日送达(FedEx、美国邮政速递服务或 UPS)。请勿在周五发送 - 周末没人收货,样本可能在周一就无法使用了。装在一个小的保温容器中(泡沫塑料盒、小冰箱或保温午餐袋),并配备一个或多个冷藏包 - 重要的是血液样本要保持凉爽但不要冷冻,组织样本要尽可能保持冷冻。送货地址是:Gary Johnson 博士 - DM Testing 320 Connaway Hall-UMC 1500 Bouchelle Ave University of Missouri Columbia, MO 65211(注意:如果 UPS 无法识别 320 Connaway 作为有效地址,请使用 201 Connaway)如果您需要澄清,或者对这些程序有任何疑问,请通过电话(573-884-3712)、电子邮件(HansenL@missouri.edu)或普通邮件(321 Connaway Hall, University of Missouri, Columbia, MO 65211)联系 Liz Hansen。
创新和原始论文在主题领域中被征求来,包括(但不限于):模拟:具有模拟主导创新的电路;放大器,比较器,振荡器,滤纸,参考;非线性模拟电路;数字辅助模拟电路;传感器接口电路; MEMS传感器/执行器接口,低于10nm缩放技术中的模拟电路。数据转换器:nyquist速率和过采样A/D和D/A转换器;嵌入式和应用特异性A/D和D/A转换器;时间数字转换器;创新和新兴转换器体系结构。数字电路,体系结构和系统*:微处理器,微控制器,应用程序处理器,图形处理器,图形处理器,自动化处理器,机器学习(ML)和ARTIIFICIL(MORIFIFIFICERCENCES(SOCIC)和ARIFIFIFIFIFICENCESS(MOR)和ARIFIFIFIFIFIFICENCESS(MIC)和ARSIECENCES(MONIFICENCESS(a),数字电路,体系结构和系统*:数字电路,架构,构件,构件和完整系统(单片,chiplets,2.5D和3D)用于通信,视频和多媒体,退火,优化问题解决,重新选择系统的数字系统和加速器,接近和子阈值系统以及新兴应用程序。用于芯片内通信,时钟分布,软校园和耐变性设计的数字电路,电源管理(例如电压调节器,适应性数字电路,数字传感器)和数字时钟电路(例如,PLL,PLL,DLL,DLL)用于处理器。数字ML/AI系统和电路,包括新的ML模型,例如变形金刚,图形和尖峰神经网络以及超维计算的新型ML模型,包括近存储器和内存计算以及硬件优化。成像仪,医疗和显示:图像传感器;视觉传感器和基于事件的视觉传感器;汽车,LIDAR;超声和医学成像;可穿戴,可植入的,可耐用的设备;生物医学传感器和SOC,神经界面和闭环系统;医疗设备;微阵列;身体区域网络和身体耦合沟通;用于医疗和成像应用的机器学习和边缘计算;显示驱动程序,触摸感应;触觉显示; AR/VR的交互式显示和传感技术。内存:独立和嵌入式应用程序的静态,动态和非易失性记忆;内存/SSD控制器;高带宽I/O界面的回忆;基于相变,磁性,自旋转移扭矩,铁电和电阻材料的记忆;阵列体系结构和电路,以改善低压操作,降低功率,可靠性,提高性能和容错性;存储子系统中的应用特异性电路增强,用于AI或其他应用程序的内存计数或接近内存计算宏。电源管理:电源管理,电力传递和控制电路;使用电感,电容和混合技术进行切换模式转换器IC; LDO/线性调节器;门司机;宽带gap(gan/sic);隔离和无线电源转换器;信封供应调节器;能源收集电路和系统;适用于汽车和其他恶劣环境的强大电源管理电路; LED驱动程序。RF电路和无线系统**:RF,MM-WAVE和THZ频率的完整解决方案和构件,用于接收器,发射机,频率合成器,RF滤波器,收发器,SOCS和无线sips,并结合了多个chiplets。创新电路,系统,设计技术,异质包装解决方案等。用于已建立的无线标准以及未来的系统或新颖的应用,例如传感,雷达和成像,以及那些提高光谱和能量效率的应用程序。安全性:芯片展示加密加速器(例如,加密,轻度加密,Quantum Crypto,Quantum Crypto,隐私保护计算,区块链),智能卡安全性,可信赖/确定计算,确定性计算,安全循环(例如,安全循环,pufs,pufs,trngs,trngs,trngs,trngs offirention offertion offertion攻击),越来越多的攻击性攻击),该攻击性攻击性攻击性,并构成了攻击),该攻击性攻击性,越来越多的攻击),互联网和指示,攻击性,并构成了攻击),该攻击性攻击性,互联网和指标,互联网和指示,攻击性,互联网和指示。对于资源受限的系统,安全的微处理器,安全的记忆,模拟/混合信号电路安全性(例如,安全的ADC/DAC,RF,传感器),安全供应链(例如,硬件Trojan对策,可信赖的微电子电源),具有/核心技术的安全性和核心电路技术的安全性,以供型号/核心循环技术。技术方向:在各个领域的新兴和新颖的IC,系统和设备解决方案,例如集成光子学,硅电子 - 光子学集成;计量,传感,计算等量子设备。;灵活,可拉伸,可折叠,可打印和3D电子系统;细胞和分子靶标的生物医学传感器;无线功率传递距离(例如,RF和MM波,光学,超声波);用于空间应用和其他恶劣环境的IC;非电视计算和机器学习的新颖平台;集成的元物质,替代设备平台中的电路(例如碳,有机,超导体,自旋等)。有线:电线系统的接收器/发射机/收发器,包括背板收发器,铜钟链接,芯片到芯片通信,2.5/3D互连,芯片/包装链接,包装链接,高速接口,用于内存;光学链路和硅光子学;探索性I/O电路,用于提高数据速率,带宽密度,功率效率,均衡,稳健性,适应能力和设计方法;有线收发器的构建块(包括但不限于AGC,模拟前端,ADC/DAC/DSP,TIAS,TIAS,均衡器,时钟生成和分配电路,包括PLL/DLLS,时钟恢复,线驱动程序,驱动器和混合动力车)。
