云计算已成为最近的热门话题,因为大多数人都以前所未有的成本优化功能寻求可扩展且灵活的云解决方案。但是,这种进步也将许多不同的安全问题带到了云中,因此,云环境是网络威胁的肥沃基础。本文重点介绍云安全性的新趋势:APT,内部人员,数据妥协和DDOS攻击威胁。它更深入地探索这些威胁的特征以及在云结构中批准的后果。此外,本文还对旨在打击此类威胁的当前对策进行了分析。在威胁识别中进行零信任体系结构,加密技术,AI和ML等衡量标准以及在应用于云生态系统时的有效性。以下论文试图对与云计算相关的威胁和防御机制进行广泛的分析和概述,并为云计算平台提供最佳策略。结果表明,需要将安全措施调整为云计算中明显的动态安全威胁。
严重的急性呼吸道综合征2(SARS-COV-2)通过病毒和细胞膜的融合感染细胞,该病毒和细胞膜是由其三聚体峰(S)蛋白介导的。S蛋白的S1亚基含有受体结合结构域(RBD),该结合结构域(RBD)负责识别人类血管紧张素转化酶2(ACE2)受体,而S2亚基通过在两个六螺旋束(6-hb)结构组装两个HeptAd repotions和Hr2 repions和Hr1中介导了膜融合过程。1–3结构数据表明,三个HR1螺旋形成了三聚螺旋线圈中心,在该中心周围以抗平行方式将三个HR2螺旋缠绕在该中心。4–6认为6-HB的形成提供了将病毒和细胞膜驱动到融合和感染的近端的能量。从HR1或HR2衍生的肽是通过阻断6-HB的组装来实现病毒进入的有效抑制剂,如抗人类免疫缺陷VIRS(HIV)药物Enfuvirtide(T20)所示,这是第一个临床认可的病毒融合抑制剂。7,8该策略已扩展到针对许多包围病毒的抑制剂,包括新兴的冠状病毒(COVS)SARS-COV,MERS-COV和SARS-COV-2。9,10自冠状病毒疾病19(Covid-19)以来,我们一直致力于表征SARS-COV-2 S蛋白介导的膜融合的机理,以及基于HR2的融合抑制性脂肽的设计。11–17如图1所示,IPB02及其衍生物是用HR2核序列设计的,而P40-LP包含N末端扩展的VDLG基序,IPB24包含膜近端外部区域(MPER)。这些抑制剂的特征是针对不同的SARS-COV-2变体以及其他人类COV的非常有效和广泛的活性。12,13,15–17然而,SARS-COV-2继续随着Larges突变的发展而演变,导致许多可以逃脱疫苗和抗病毒药的新变体,例如Omicron XBB.1.1.5和Eg.5.1;因此,泛氧化病毒抑制剂的开发仍然是很高的优先事项之一。
抗菌抗性(AMR)的崛起是由于过度使用抗生素的过度使用,是全球的主要公共卫生威胁,并负责长期疾病,较长的医院住院以及对社会的经济负担。本文旨在回顾各种组织在打击AMR中的因素,抗菌管理的作用,预防策略和作用。AMR的三个主要因素是对抗生素的不适当利用,对感染控制措施的不遵守以及对多种药物有抵抗力的病原体的出现。抗菌管理计划在促进抗菌剂的明智和有针对性的利用方面起着至关重要的作用,从而保护了它们的功效并减轻了抵抗的出现。实施此类程序通过确保个人获得最合适的治疗干预措施来优化患者的结果。国际组织通过促进抗菌药物,开发新药和改善监视系统的负责使用,在解决AMR方面起着至关重要的作用。随着AMR的影响的增长,至关重要的是采用协作和跨学科的方法有效地减轻其后果。
摘要:该研究旨在研究基于大脑的学习在增强SMP Dunia Harapan Makassar学生能力方面的有效性。接下来,在这项研究上使用了该方法是使用准实验设计的定量研究方法。这项研究的数据是通过测试和测试后形式组成的测试收集的。这项研究的人口由2023/2024学年的SMP Dunia Harapan Makassar的七年级学生组成,其中包括三个班级或60名学生。同时,这项研究的样本包括两个类别的实验类别(VII B)和对照类(VII A),每个类别由20名学生组成。结果表明,使用基于脑的学习能力有积极的改进。这是由学生在实验班上的平均得分(88.25)所证明的明显提高了,比学生在对照班上的平均得分(76.5)。结果表明,实验课程中基于大脑的学习有效地提高了学生的口语能力。总而言之,结果支持了基于大脑的学习在增强语言学习成果方面的有效性,以提高SMP Dunia Harapan Makassar的七年级学生的讲话能力。积极的结果表明,将基于大脑的学习纳入语言教育以改善学习成绩的潜力。
至:感兴趣的人和提供者来自:伊丽莎白·皮特曼(Elizabeth Pitman),医疗服务部总监日期:2024年7月15日SUBJ:DMS托管护理质量策略的通知,作为联邦法规要求的一部分,第42CFR§438.340,供您审核,并提出了评论,并提出了评论。公开评论必须在上面的地址或以下电子邮件地址以书面形式提交:orp@dhs.arkansas.gov请注意,响应本通知的公开评论被视为公共文件。公众评论,包括评论者的姓名和公众评论中包含的任何个人信息,将公开可用,并可能被各个人看到。如果您有任何评论,请以书面形式提交这些评论,不迟于2024年8月14日。
摘要。3D高斯碎片在实时神经渲染中引起了广泛的关注和应用。同时,人们对这种技术在稀疏观点中的限制,绩效和鲁棒性等方面引起了人们的关注,从而导致了各种改进。然而,显然缺乏关注分裂本身固有的局部仿射近似引入的投影错误的基本问题,以及这些错误对照片真实渲染质量的结果影响。本文介绍了3D gaus-sian脱落的投影误差函数,从投影函数的一阶泰勒膨胀开始,从剩余的误差开始。分析建立了误差与高斯平均位置之间的相关性。subsemess,利用功能优化理论,本文分析了该函数的最小值,以提供最佳的投影策略,以涉及最佳的高斯分裂,这可以使各种摄像机模型可观。实验验证进一步提出了这种投影方法可以减少伪影,从而导致更令人信服的现实渲染。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
摘要: - 在19世纪后期,电动汽车(EV)首先出现并开发并经历了近几十年来的深刻变化。由于电力会导致一定程度的沉默,舒适和简单的操作,而当时汽油发动机汽车无法实现,因此它是汽车推进的最优选的想法之一。由电动机提供动力的车辆,该电动机采用可充电电池或任何其他能源存储设备中存储的能量称为电动汽车。电力被电动汽车用作其主要能源。在运输部门的进步需要可持续和环保的环境,这是电动汽车所表示的。现代电子运输的主要来源是电动电池。电动电池正在开发以传统内燃机(ICE)车辆为中心的,以更可持续的运输和电动移动性改善。热管理(TM)确保电池在最佳温度范围内运行,从而提高效率并防止过热。使用冷却系统,相变材料(PCM),液体冷却和加热系统用于有效的TM和整体车辆性能来克服上述问题。因此,本评论的目标是解释电动电动电动电池电动电池TM的电动电动电池热管理(BTM),电动电动电动电动电池TM的热失控(TR)预防,电动电动电池热电系统与加热,通风和空调(HVAC)的组合以及EV电池的性能评估。
Terahertz(THz)频率范围从0.1到10 THz,位于微波和红外频率之间,提供了安全性,宽带能力和低能消耗等独特性能[1,2]。尽管成分进步的挑战引起的最初忽视,但THZ频率现在因其在通信系统,光谱,生物医学成像和军事应用等领域的广泛效用而越来越受到认可[3,4]。THZ波的能力渗透到各种材料以及其高时间分辨率的能力中,它们对于在高速无线通信系统中的应用中非常有价值。新方法有效地利用了THZ频率,从而巩固了现有的限制并为成像,通信和其他地区的开创性应用开辟了可能性。Terahertz(THZ)技术的重要性源于其无与伦比的属性,在多种应用中起着关键作用。在电磁波的范围内,THZ系统呈现出宽敞的带宽,可促进高更频谱分析和成像[5]。thz成像系统在医学领域有效,特别是用于研究脑组织和识别神经退行性疾病和脑肿瘤等疾病的神经诊断技术[6,7]。此外,THZ技术在药物环境中至关重要,从而使分子光谱能够用于分子的诊断和成像[8]。除了医疗保健领域外,THZ技术被证明在半导体生产和汽车组装等工业环境中有用,证明了其在各个行业的多功能性和影响力。