色谱柱保养 为最大程度延长色谱柱寿命,请确保样品和流动相不含颗粒。强烈建议在样品注射器和色谱柱之间使用保护柱或孔隙率为 0.5 微米的在线过滤器。HALO ® 90 Å RP-Amide 色谱柱上的 2 微米孔隙率筛板比其他小颗粒色谱柱通常使用的 0.5 微米筛板更不容易堵塞。如果色谱柱的工作压力突然超过正常水平,可以尝试反转色谱柱的流动方向以去除入口筛板上的碎屑。要从色谱柱中去除强保留物质,请用非常强的溶剂(例如所用流动相的 100% 有机成分)反向冲洗色谱柱。二氯甲烷和甲醇的混合物(95/5 v/v)通常可以有效完成此任务。极端情况下可能需要使用非常强的溶剂,例如二甲基甲酰胺 (DMF) 或二甲基亚砜 (DMSO)。
对于刚开始研究肽和蛋白质的人来说,可能会惊讶地发现,在使用低 pH 值和低离子强度流动相(0.1% 甲酸)的分离条件下,这些类型的分析物会吸附到金属表面。这种流动相通常用于 LC-MS 分析。肽和蛋白质上的带电位点可能会与色谱柱(筛板/色谱柱主体)、仪器硬件或连接材料中的金属表面相互作用。当首次使用新色谱柱时,由此产生的吸附可能会导致信号低和/或样品回收率降低。在极端情况下,即使多次注射肽或蛋白质样品后也可能观察不到信号。
描述 HALO ® 90 Å AQ-C18 是一种基于 Fused-Core ® 粒子设计的高速、高效液相色谱柱。Fused-Core ® 粒子在固体二氧化硅核心周围提供了一个高纯度二氧化硅薄多孔壳。由于 0.4 微米厚的多孔壳中的浅扩散路径和 2 微米的高度均匀的整体粒度,这种粒子设计表现出非常高的柱效率。HALO ® 90 Å AQ-C18 是一种 C18 键合相,采用专有工艺制备,加入少量极性硅烷,使相具有抗脱湿性。这种抗脱湿性使 AQ-C18 相的用户能够运行高水性(高达 100%)的流动相。改性 C18 相表现出与 HALO ® C18 类似的保留性,但选择性不同,为解决困难的分离增加了一种有价值的替代方案。 HALO ® 90 Å AQ-C18 是一种反相填料,可用于碱性、酸性和中性化合物。色谱柱特性 Fused-Core ® 颗粒的表面积约为 120 m 2 /g,平均孔径为 90 Å。由于实心核的密度,Fused-Core ® 颗粒比市售的全多孔颗粒重 30% 到 50%。因此,每个色谱柱的有效表面积与表面积在 225-300 m 2 /g 范围内的全多孔颗粒填充的色谱柱相似。操作指南 • 流动方向标记在色谱柱标签上。色谱柱不应以反向流动方向操作。(见下文色谱柱保养部分的讨论。)• 新色谱柱含有 100% 乙腈。最初应注意避免使用与此溶剂不混溶或可能导致沉淀的流动相。 • 水和所有常见的有机溶剂均与 HALO ® 90 Å AQ-C18 色谱柱兼容。 • 为最大程度地延长色谱柱寿命,HALO ® 90 Å AQ-C18 色谱柱最好在 60 ºC 以下使用。 • 为最大程度地延长色谱柱寿命,HALO ® 90 Å AQ-C18 色谱柱的流动相 pH 值最好保持在 pH = 2 至 9 的范围内。 • HALO ® 90 Å AQ-C18 色谱柱在高达 1000 bar (14,500 psi) 的工作压力下也能保持稳定。 色谱柱保养 为最大程度地延长色谱柱寿命,请确保样品和流动相不含颗粒。强烈建议在样品注射器和色谱柱之间使用保护柱或孔隙率为 0.5 微米的在线过滤器。 HALO ® 90 Å AQ-C18 色谱柱上的 1 微米孔隙率筛板比其他小颗粒色谱柱通常使用的 0.5 微米筛板更不容易堵塞,但如果色谱柱以反向流动方向运行,这些筛板可能会让少量填料颗粒逸出。色谱柱方向在标签上标明,只有在其他措施无法成功去除入口堵塞时才应反向冲洗色谱柱。要从色谱柱中去除强保留物质,用非常强的溶剂(例如所用流动相的 100% 有机组分)反向冲洗色谱柱。二氯甲烷和甲醇的混合物 (95/5 v/v) 通常可以有效完成此任务。极端情况下可能需要使用非常强的溶剂,例如二甲基甲酰胺 (DMF) 或二甲基亚砜 (DMSO)。色谱柱存储长期存储硅胶基反相色谱柱的最佳方法是使用 100% 乙腈。色谱柱可以在大多数常见流动相中安全存放短期(最多 3 或 4 天)。但是,当使用缓冲液时,最好同时保护色谱柱和 HPLC 设备,并使用相同的流动相(不含缓冲液)冲洗色谱柱以除去盐(例如,当使用 60/40 ACN/缓冲液时,用 60/40 ACN/H 2 O 冲洗色谱柱)以消除盐腐蚀的危险,同时使色谱柱与原始流动相快速重新平衡。储存柱子之前,应该用柱子附带的端塞将端头配件紧紧密封,以防止填料干燥。
摘要。目的。经颅电刺激 (TES) 是一种调节大脑活动和治疗疾病的有效技术。然而,TES 主要用于刺激浅表大脑区域,无法达到更深的目标。如 [1] 中所述,注入电流在头部的扩散受到体积传导和电流通过具有不同电导率的头部层时额外扩散的影响。在本文中,我们介绍了 DeepFocus,这是一种旨在刺激大脑“奖励回路”中深层大脑结构的技术(例如眶额皮质、布罗德曼 25 区、杏仁核等)。方法:为了实现这一点,DeepFocus 除了在头皮上放置电极外,还利用经鼻电极放置(筛板下和蝶窦内),并优化这些电极上的电流注入模式。为了量化 DeepFocus 的好处,我们开发了 DeepROAST 模拟和优化平台。 DeepROAST 使用真实的头部模型模拟复杂颅底骨骼几何形状对 DeepFocus 配置产生的电场的影响。它还使用优化方法来搜索局部和有效的电流注入模式,我们在模拟和尸体研究中使用这些模式。主要结果。在模拟中,优化的 DeepFocus 模式在几个感兴趣的区域比仅限头皮的电极产生了更大、更聚焦的场。在尸体研究中,DeepFocus 模式在内侧眶额皮质 (OFC) 产生了大场,其幅度与刺激研究相当,并且结合已建立的皮质刺激阈值,表明场强度足以产生神经反应,例如在 OFC。意义。这种微创刺激技术可以更有效、更低风险地针对深部脑结构来治疗多种神经疾病。