我保证我是:(a) 患者,且年满 18 岁;或 (b) 患者的法定监护人。此外,我在此同意 KPH Healthcare Services, Inc. 的认证免疫药剂师、药房实习生(如果允许)、注册护士、执业护士、职业护士、执业护士、医生或助理医生(如适用)为我接种上述疫苗。我理解不可能预测接种疫苗可能产生的所有副作用或并发症。我理解上述疫苗的风险和益处,并且已收到、阅读并已向我解释了我选择接种的疫苗的疫苗信息声明。我还承认我有机会提出问题,并且这些问题得到了令我满意的答复。此外,我承认,接种疫苗后,我已被建议留在疫苗接种地点附近约 15 分钟,以便由负责接种的医疗保健提供者进行观察。我谨代表我自己、我的继承人和个人代表,在此免除 KPH Healthcare Services, Inc.(如适用)、其职员、代理人、继任者、部门、关联公司、子公司、管理人员、董事、承包商和雇员的任何和所有已知或未知的因接种上述疫苗而引起、与之相关或与接种上述疫苗有关的责任或索赔。我承认接种免疫疫苗不能代替我每年去初级保健医生处进行体检。我承认已收到 KPH Healthcare Services, Inc. 关于受保护健康信息的隐私声明。我承认 (a) 我了解我所在州的免疫登记处(“州登记处”)和我所在州的健康信息交换(“州 HIE”)的目的/好处;并且 (b) KPH Healthcare Services, Inc.(视情况而定)可将我的免疫接种信息披露给州登记处、州 HIE,或通过州 HIE 披露给州登记处,以用于公共卫生报告,或披露给在州登记处和/或州 HIE 登记的我的医疗保健提供者,以用于护理协调。我承认,根据我所在州的法律,我可以使用州批准的退出表格来阻止此类披露。除非我向 KPH Healthcare Services, Inc. 提供签署的退出表格,否则我了解我的同意将一直有效,直到我撤回我的许可,并且我可以通过向 KPH Health Services, Inc. 和/或我的州 HIE(视情况而定)提供填写完整的退出表格来撤回我的同意。我了解,即使我不同意或撤回我的同意,我所在州的法律也可能允许根据法律要求或允许向州 HIE 和/或上述我的初级保健提供者披露或通过他们披露我的某些免疫接种信息。我进一步授权 KPH Healthcare Services, Inc. (a) 向或通过 State HIE 向我的医疗专业人员、Medicare、Medicaid 或其他第三方付款人披露我的医疗或其他信息,包括我的传染病(包括 HIV)、精神健康和药物/酒精滥用信息,以便进行护理或付款;(b) 向我的保险公司提交上述要求的物品和服务的索赔;以及 (c) 就上述要求的物品和服务,代表我向 KPH Healthcare Services, Inc. 申请支付授权福利(如适用)。我已获悉免疫接种的总费用,减去任何健康保险补贴。我已获悉,如果我的健康保险不承保免疫接种,则由初级保健提供者管理的免疫接种可能会承保。
木质素是一种复杂的化学异质聚合物,可形成木质纤维素生物和化学水解的物理屏障,使木质纤维素生物质难以降解。木质素分解微生物通过产生细胞外酶在木质素降解中起着至关重要的作用。木质素过氧化物酶和锰过氧化物酶是在木质素降解中发挥作用的酶。已从土壤、厨余垃圾、落叶和牛粪中分离出 41 种细菌分离株。然而,这些分离株的木质素分解活性尚未被发现。本研究旨在根据木质素过氧化物酶和锰过氧化物酶活性确定从土壤、落叶、厨余垃圾和牛粪中分离出的细菌的木质素分解能力。研究分几个阶段进行:分离株再培养,基于亚甲蓝染料降解的木质素过氧化物酶活性定性和定量测试,以及基于酚红染料降解的锰过氧化物酶活性定性和定量测试。共有 4 株来自土壤的细菌分离物(Tn9、Tn14、Tn16 和 Tn17)和 2 株来自牛粪的细菌分离物(KS2 和 KS5)表现出定性和定量的木质素过氧化物酶活性。4 株来自土壤的分离物(Tn2、Tn6、Tn14 和 Tn16)、1 株来自厨余的分离物(SD1)和 1 株来自牛粪的分离物(KS5)也表现出锰过氧化物酶活性,定性和定量均如此。表现出木质素过氧化物酶和锰过氧化物酶活性的 9 株细菌分离物具有作为木质素降解生物制剂的潜力。关键词:细菌、木质素分解、过氧化物酶
噬菌体FD,FL和OX174是已知的最小病毒之一。它们属于具有单链圆形DNA作为其遗传物质(1-4)的一组良好特征的副觉。他们的DNA的分子量约为2 x 106,仅包含有限数量的基因。fd和fl是丝状噬菌体,在血清学和遗传上相关。ox174是一个显然与丝状噬菌体无关的球形噬菌体。dev> deNhardt和Marvin(5)通过DNA-DNA杂交进行了表明,尽管这两种类型的噬菌体(即丝状和球形)在每种类型的DNA之间没有检测可检测的同源性,尽管在每种类型内部都有很高的同源性。最近,已经推出了一种相对较快的分馏和序列大嘧啶寡核苷酸的技术。已经确定了9-20个基碱残基的FD DNA中长嘧啶裂纹的序列(6)。在本报告中,提出了来自FL和OX174 DNA的大嘧啶产物的序列。将这些序列与先前从FD DNA获得的序列进行了比较。
体外和体外农杆菌介导的毛状根转化 (HRT) 测定是植物生物技术和功能基因组学工具包的关键组成部分。在本报告中,使用 RUBY 报告基因优化了大豆的体外和体外 HRT。评估了不同的参数,包括农杆菌菌株、细菌细胞培养物的光密度 (OD 600 )、共培养基、大豆基因型、外植体年龄以及乙酰丁香酮的添加和浓度。总体而言,就毛状根和转化根(表达 RUBY )的诱导百分比而言,体外测定比体外测定更有效。尽管如此,体外技术被认为更快且方法更简单。在 cv 的 7 天大子叶上观察到了 RUBY 的最高转化。 Bert 用 R1000 接种 30 分钟,R1000 悬浮在 ¼ B5 培养基中,OD 为 600 (0.3),乙酰丁香酮含量为 150 µM。该测定的参数还通过两步体外毛状根转化获得了最高百分比的 RUBY。最后,使用基于机器学习的建模,进一步确定了两种测定的最佳方案。本研究建立了适用于大豆功能研究的高效可靠的毛状根转化方案。
*表明CDC强烈建议使用第二剂,但这并不是学校援助的必要条件。 div>** CDC:通过免疫实践咨询委员会(ACIP)建议常规疫苗以防止疫苗接种可预防疾病。 div>尽管亚利桑那州要求大多数疫苗上学,但您的孩子可能需要其他推荐的疫苗。 div>这些剂量的细节和指导有例外,请参阅亚利桑那州学校免疫的要求:亚利桑那州K-12度的学校注册所需的疫苗指南(2024-2025学年)
3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。 *相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。 缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。 在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。 我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。 我们在计算上筛选了跨越各种化学类别的12,000多种化合物。 对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。 值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。 其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。 患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。*相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。我们在计算上筛选了跨越各种化学类别的12,000多种化合物。对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。我们的工作证明了在与ML串联串联中使用表型筛选的使用可以有效地识别具有很少已知分子靶标的高度异质指示中个性化处理的治疗铅。关键字:胶质母细胞瘤,人工智能,药物发现,机器学习简介胶质母细胞瘤多形(GBM)是人类成年人中最常见和最具侵略性的原发性脑肿瘤,其特征是遗传驱动因素的实质异质性和肿瘤微环境1-3。在过去20年中,新诊断的GBM患者的护理标准包括手术,替莫唑胺(TMZ)和电离辐射(IR),延长了12个月至15个月患者的总体生存期4,5。大规模的基因组分析增强了我们对GBM分子生物学的理解,后者支持
摘要 蛋白质是细胞中的关键分子,其丰度不仅在基因表达水平而且在转录后水平受到广泛调控。在这里,我们描述了一种酵母基因筛选方法,该方法能够系统地表征蛋白质丰度调控在基因组中的编码方式。该筛选方法结合了 CRISPR/Cas9 碱基编辑器来引入点突变,并对内源性蛋白质进行荧光标记以方便流式细胞仪读数。我们首先使用单个 gRNA 以及正向和负向选择筛选对酵母中的碱基编辑器性能进行了基准测试。然后,我们研究了 16,452 种基因扰动对代表各种细胞功能的 11 种蛋白质丰度的影响。我们发现了数百种调控关系,包括 GAPDH 同工酶 Tdh1/2/3 与 Ras/PKA 通路之间的新联系。许多已识别的调节因子特定于这 11 种蛋白质中的一种,但我们还发现了一些基因,这些基因在受到扰动时会影响大多数测试蛋白质的丰度。虽然更具体的调控因子通常作用于转录,但广泛的调控因子往往在蛋白质翻译中发挥作用。总的来说,我们的新筛选方法为蛋白质调控网络的组成部分、规模和连通性提供了前所未有的见解。
Ascoscreed是一种以其非碎裂,快速设置,毫无轻松的扩散和出色的强度特性而闻名的浓缩水泥粘合剂。与沙子和水结合正确的比例时,Ascoscreed形成了一个迫击炮床和地板底层尺寸,该尺寸没有收缩,可以轻松倒入或抽水。此粘合剂是高性能屏幕的基础,为安装各种类型的瓷砖或石材地板准备了表面。