表现出高比容量(2 A g 1 时 576 C g 1)。Shinde 等人 11 在室温下通过快速化学法生长了 3D Bi 2 O 3,在电流密度为 2 A g 1 时其比容量为 447 C g 1。刘等人 12 设计了缺氧 r-Bi 2 O 3 /石墨烯柔性电极,在 1 mA cm 2 时具有 1137 C g 1 的高比容量。尽管如此,Bi 2 O 3 对于 ASC 仍然存在缺点,例如其本质上较差的电子和离子电导率,充电 - 放电过程中的体积膨胀很大。进一步的研究表明,碳可以作为缓冲层,有效减少形貌变化,保护电极结构。Bi 2 O 3 /C复合材料的简便设计和制备策略仍需继续研究,以调整形貌和电子结构。13 – 16
摘要:在日常生活中,假冒伪劣产品特别是货币、药品、食品、机密文件等,会带来十分严重的后果,发展具有多层次安全性的防伪认证技术是克服这一挑战的有力手段。在各种防伪技术中,荧光防伪技术以其材料来源广泛、成本低廉、使用简便、隐蔽性好、响应机制简单等特点,被广泛用于打击造假者。螺吡喃因具有可逆的光致变色性质,在防伪和信息加密领域受到科学家的青睐。本文对目前可用的螺吡喃基荧光材料从设计到防伪应用进行了综述,旨在帮助科学家设计和开发具有高安全性、高性能、响应速度快、防伪等级高的荧光防伪材料。
Valvoline Inc. (NYSE: VVV) 是快速、简便、值得信赖的汽车预防性维护领域的领导者。Valvoline Inc. 通过充分发挥核心业务的潜力、加速网络增长和创新来满足客户和不断发展的汽车保有量的需求,从而创造股东价值。Valvoline Inc. 及其特许经营合作伙伴在北美拥有 1,850 多家服务中心,为客户提供 4.6 星(满分 5 星)评级服务,包括 15 分钟车内换油、更换电池、灯泡和雨刷、轮胎换位以及其他制造商推荐的维护服务。我们很自豪能够十次荣获 BEST 培训卓越奖,并被《企业家》和《特许经营时报》评为我们类别中顶级特许经营商。要了解更多信息或查找您附近的服务中心,请访问 vioc.com
摘要 航空航天飞机自1903年问世以来,极大地提高了人类的生活质量,扩展了太空爆炸能力,液体推进剂或燃料是航空航天飞机的主要动力来源。对于喷气燃料而言,其能量密度特性对飞机的航程、载重量和性能起着重要作用。因此,高能量密度(HED)燃料的设计和制备越来越受到世界各地研究人员的关注。本文简要介绍了液体喷气燃料和HED燃料的发展,并展示了HED燃料的未来发展方向。为了进一步提高燃料的能量密度,提出了设计和构建多环和染色分子结构的方法。为了突破碳氢燃料的密度限制,在HED燃料中添加含能纳米颗粒以制备纳米流体或凝胶燃料可能提供一种简便有效的方法来显着提高能量密度。这项工作为先进飞机HED燃料的开发提供了前景。
摘要:压电执行器具有响应速度快、结构紧凑、精度高、产生巨大阻挡力以及操作简便等特点,在先进分配领域中正被迫切地采用,以提高喷射性能并满足微电子封装、胶粘剂键合和小型化行业的精度要求。本研究重点是一种压电驱动的紧凑型流体分配器的基础设计和开发,该分配器利用一级杠杆的原理来放大针头位移,并扩大所开发的喷射分配器的应用领域。利用基本杠杆原理,进行基于几何的建模,以制造一种常闭铰链杠杆式分配器的工作原型。进行了初步实验,以见证所制造的分配器每秒输送 100 个工作流体点的可行性,这将提供一种分配各种流体的新型装置,并且所提出的放大机制也适用于各种其他压电应用。
摘要:CRISPR/Cas 最初于 35 年前在大肠杆菌中被发现,是一种防止病毒(或其他外源)DNA 入侵基因组的防御系统,它开创了功能遗传学的新时代,并成为生命科学所有分支领域的一种多功能遗传工具。CRISPR/Cas 以简便快速的方式彻底改变了基因敲除方法,但它在基因敲入和基因修饰方面也非常有效。在海洋生物学和生态学领域,该工具在“暗”基因的功能表征和基因旁系同源物的功能分化记录中发挥了重要作用。尽管它非常强大,但仍存在一些挑战,阻碍了一些重要谱系中功能遗传学的进展。本综述探讨了 CRISPR/Cas 在海洋研究中的应用现状,并评估了迅速扩大这一强大工具的部署以解决无数基础海洋生物学和生物海洋学问题的前景。
SIC-S 自 2021 年 5 月在萨赫勒-撒哈拉地带 (BSS) 投入使用以来,获得了非常积极的反馈。它因其符合人体工程学且使用简便而出名。它集成了初始友好地理定位 (GLA) 和信息交换能力,提供了真正的运营附加值。为了说明这一附加值,陆军总参谋部计划和项目副参谋长举了一个名为“Voie sacrée”的后勤车队的例子,该车队于2021年8月首次装备完毕,在阿比让和加奥之间行驶。车队中的指挥所和士兵能够实时共享所有车辆的作战情况。达米安·德马尔萨克将军指出:“当然,与民用标准相比,这种变化可能看起来很小,但在萨赫勒这样极其苛刻的环境下,这种进步是真实的,并为陆军的协同作战方式奠定了基础。”
摘要:能够对多种外界刺激作出反应的多响应性聚合物是具有多种应用前景的材料。本文介绍了一种通过聚甲基丙烯酸甲酯 (PMMA) 的后聚合酰胺化来合成三重响应性(pH、温度、CO 2 )聚(N,N-二乙基氨基乙基甲基丙烯酰胺)的简便方法。与三价反离子([Fe(CN) 6 ] 3 @ )结合,在 pH 为 8 和 9 时都可以实现上限和下限临界溶液温度 (UCST/LCST) 型相行为。PMMA 和基于 PMMA 的嵌段共聚物可通过活性阴离子和受控自由基聚合技术轻松获得,这为基于所开发的功能化方法的各种响应性聚合物结构开辟了道路。该方法还可应用于熔融加工的块状 PMMA 样品,以在 PMMA 表面引入功能性响应部分。
印刷有机和无机电子器件在传感器、生物电子学和安全应用中继续受到广泛关注。尽管印刷技术通常具有数十微米范围内的典型最小特征尺寸,并且需要在高温下进行后处理程序以增强功能材料的性能,但人们已经研究了许多印刷技术。在此,我们介绍了使用三种不同油墨(半导体 ZnO 以及金属 Pt 和 Ag)进行激光打印,这是一种制造最小特征尺寸低于 1 µ m 的印刷功能电子设备的简便方法。ZnO 打印基于激光诱导热液合成。重要的是,这三种材料中的任何一种在激光打印后都不需要进行任何类型的烧结。为了证明我们方法的多功能性,我们展示了功能二极管、忆阻器和基于 6 × 6 忆阻器交叉结构物理上不可克隆的功能。此外,我们通过结合激光打印和喷墨打印实现了功能晶体管。
储能装置用石墨烯由于制备方法和质量缺陷,阻碍了其进一步广泛应用。本文,我们报道了一种简便且经济有效的方法,从生物相容性壳聚糖中提取三维多孔石墨烯(3DPG)并进行大规模生产。利用3DPG的大表面积、优异的电导率和高电化学活性,通过在商用DLC301有机电解质中耦合两个3DPG电极,实现了先进的对称超级电容器(3DPG//3DPG SCs)。该装置在10 mV s-1的扫描速率下可提供168.9 F g-1的显著电容,并显示出优异的倍率能力,在10到100 mV s-1的范围内电容保持率为81.5%。此外,3DPG//3DPG SCs表现出突出的循环耐久性,10,000次循环后电容仍为96%。这项工作可能为石墨烯在工业层面的高效储能应用提供启示。