© 2022,Mark。保留所有权利。所有提及的品牌、产品名称、公司名称、商标和服务标记均为其各自所有者的财产。我们的产品不断开发和改进。因此,我们保留修改产品规格的权利,恕不另行通知。图片不具有合同约束力。
由于汽车内的人机交互 (HMI) 不再局限于方向盘、油门和刹车,HCI 研究领域正在迅速发展。车载技术和自动驾驶的最新发展带来了更多功能,这些功能在评估汽车内部界面时带来了一些新挑战。汽车行业的老牌公司也不得不面对新的挑战,因为有新的参与者将其产品集成到汽车中。苹果公司高级运营副总裁 Jeff Williams 称汽车是“终极移动设备”(Snyder,2015 年)。除了带有速度表、转速表和用于操作车辆的基本信息显示器的典型仪表盘外,现代汽车通常还配备了各种车载信息系统 (IVIS)。这些系统涵盖的功能包括显示车辆状态和导航信息、娱乐功能以及外部设备的多种连接选项。
简化安装、操作和扩展 AlfaVap 板式蒸发器采用极其紧凑的设计,安装和操作非常方便。完整的工厂可以轻松容纳在大多数现有建筑物中,而传统的壳管式蒸发器则需要抬高屋顶。此外,无需重建生产设施即可在以后增加产能。使用 AlfaVap,只需添加更多盒式磁带即可实现这一点 - 与传统的壳管式蒸发器相比,这是一个主要优势。
外延生长时,氧化膜必须生长在晶体衬底上。这些要求极大地限制了它们的适用性,使得我们无法制备多种人工多层结构来研究薄膜及其界面处出现的突发现象[2],也无法制造柔性器件并单片集成到硅中。[3–5] 人们致力于开发将功能氧化膜与生长衬底分离的程序,以便能够自由操作它。这些方法包括机械剥离[6]、干法蚀刻[7,8]和湿化学蚀刻[9,10]。在化学蚀刻程序中,使用牺牲层(位于衬底和功能氧化物之间)似乎是一种快速且相对低成本的工艺。为了使这种方法成功,牺牲层应将外延从衬底转移到所需的氧化物,经受功能氧化物的沉积过程,并通过化学处理选择性地去除,从而可以恢复原始的单晶衬底。 (La,Sr)MnO 3 已被证明可以通过酸性混合物进行选择性蚀刻,从而转移单个外延 Pb(Zr,Ti)O 3 层 [11] 和更复杂的结构,例如 SrRuO 3 /Pb(Zr,Ti)O 3 /SrRuO 3 。 [12] 最近,水溶性 Sr3Al2O6(SAO)牺牲层的使用扩大了独立外延钙钛矿氧化物层(SrTiO3、BiFeO3、BaTiO3)[13–15] 和多层(SrTiO3/(La,Sr)MnO3)[16] 的家族,这些层可进行操控,从而开辟了一个全新的机遇世界。[5,10,17] 制备此类结构的沉积技术也是需要考虑的关键因素,不仅影响薄膜质量,还影响工艺可扩展性。虽然分子束外延和脉冲激光沉积等高真空沉积技术是生产高质量薄膜的成熟技术[1,18–20],但溶液处理和原子层沉积等可实现低成本生产的替代工艺正引起人们的兴趣。[21,22]
1064/1080nm高功率风冷全光纤连续激光器具有超紧凑、长寿命、低成本和操作简便的特点,广泛应用于激光雷达、生命科学、材料加工、微电子、科学研究等领域。
可控的高区域选择性直接 CH 芳基化是人们非常希望实现的,但这仍然是一个巨大的挑战。在此,我们开发了一种简便的区域选择性直接 CH 芳基化方法,用于高效构建各种基于对称二噻吩并邻苯二甲酰亚胺的 π 共轭分子。所得方法适用于各种基质,从富电子单元到具有大空间端基的缺电子单元。已证实芳基卤化物能够通过直接 CH 芳基化与二噻吩并邻苯二甲酰亚胺 (DTI) 偶联,表现出高区域选择性。已证明,通过改变 DTI 核心上的功能端基可以微调发射颜色以覆盖大部分可见光谱。结果提出了一种简便的高选择性直接 CH 芳基化策略,为高效构建 π 共轭分子以供各种潜在的光电应用开辟了前景。
Auto-Mag® DNA 片段分选纯化回收试剂(磁珠法)是一款基于顺磁珠技术开发的高性能试剂,专为满足 下一代测序 (NGS) 文库构建中的 PCR 产物、DNA 片段和 RNA 的纯化需求而设计,同时支持 DNA 片段的大 小分选与高效回收。在 PCR 产物纯化方面,该试剂提供了单管和 96/384 孔板两种灵活格式,通过优化的缓 冲液选择性地结合 >100 bp 的 PCR 扩增产物,利用简便的清洗步骤去除多余引物、核苷酸、盐和酶,最终 使用低盐洗脱缓冲液或水进行温和高效的洗脱。在 DNA 片段大小分选中,用户可通过调整试剂与 DNA 样 本的体积比,精准选择目标 DNA 片段范围,并通过结合、洗涤和洗脱的简单操作回收分布均匀、符合实验 需求的目标 DNA 片段。