框架 [10] 3. 拟议系统 3.1 项目范围 该聊天机器人是一个基于人工智能的聊天机器人,它以音频或文本格式接收用户的问题,将音频转换为文本格式,尝试通过使用 NLP 处理文本来理解问题,并找到问题的适当答案。 在自然语言处理中,人类语言被分成几个部分,以便可以在整个对话的背景下分析和理解语句的语法结构和这些部分的含义。 这使得计算机能够像人类一样阅读和理解口头或书面文本。 例如,当聊天机器人收到“学院有多少个系?”的问题时,它会回答“学院有 6 个系”。 主要目标是通过将回答访客对学院的疑问的责任转移到聊天机器人来减轻学院教职员工的负担,通过创建一个基于网络的聊天机器人,该聊天机器人可以与学院网站结合,并可以回答用户的文本和基于音频的查询。目标是为访客和教职员工提供一种快速简便的方式来解答他们的疑问,并为开发人员提供将新信息纳入聊天机器人信息库的方法。 3.2 用户类别和特征 根据用户查询聊天机器人的方式,此应用程序将用户分为两类: 1. 文本 - 这些用户通过在文本框中键入来提供文本格式的输入。 2. 音频 - 这些用户以音频格式提供输入,然后首先将其转换为文本格式或由聊天机器人服务器进行处理。
聚二甲基硅氧烷 (PDMS) 泡沫作为下一代聚合物泡沫材料之一,表面粘附性差且功能有限,极大地限制了其潜在应用。制备具有多种功能的先进 PDMS 泡沫材料仍然是一项关键挑战。在这项研究中,报道了前所未有的自粘性 PDMS 泡沫材料,该材料具有蠕虫状粗糙结构和反应性基团,用于通过简便的硅胶发泡和浸涂策略以及随后的硅烷表面改性来制造用 MXene/纤维素纳米纤维 (MXene/CNF) 互连网络装饰的多功能 PDMS 泡沫纳米复合材料。有趣的是,这种自粘性 PDMS 泡沫与混合 MXene/CNF 纳米涂层产生强的界面粘附力。因此,优化的PDMS泡沫纳米复合材料具有优异的表面超疏水性(水接触角≈159o)、可调的电导率(10-8至10Sm-1)、在宽温度范围(-20至200oC)和复杂环境(酸、钠和碱条件)中稳定的压缩循环可靠性、出色的阻燃性(LOI值> 27%且产烟率低)、良好的隔热性能和在各种应力模式和复杂环境条件下可靠的应变感应。它为合理设计和开发具有多功能性的先进PDMS泡沫纳米复合材料提供了新途径,可用于智能医疗监控和防火隔热等各种有前景的应用。
通过一种简便的一锅方法合成氧化锌/还原氧化石墨烯(ZnO/RGO)纳米颗粒。与氧化石墨烯(GO)相比,由于存在更多的活性位点而启动RGO的使用。物理表征,例如傅立叶变换红外光谱(FTIR)证实了RGO光谱中ZnO拉伸峰的存在,这表明纳米颗粒作为成分共存。热力学分析(TGA)证实纳米颗粒的稳定性为68.91%的纳米颗粒在暴露于900°C的高温后仍保持纳米颗粒的稳定性。当使用Brunauer-Emmett-Teller(BET)研究时,纳米颗粒在间孢子虫区域下,纳米颗粒在中孔区域(BET),其中纳米颗粒在中孔区域(BET),其中有10.4 nm nm。将ZnO/RGO滴入裸露的玻璃碳电极(GCE)上,以使用环状伏安法(CV)和电化学障碍谱光谱谱(EIS)以及氧气还原反应(ORR)研究纳米颗粒的电化学行为。与裸露的GCE相比,对ZnO/RGO/GCE修饰的电极的电化学研究表现出更大的电流响应,稳定的电子转移以及较低的电荷转移电阻。纳米颗粒证明了潜在的应用作为电催化剂,其产量率很高(ORR)。因此,纳米颗粒可以用作当前生产和克服高成本的贵金属使用量的替代品。关键字:电化学,纳米颗粒,电解质,石墨烯,氧化锌
执行摘要 从疫情开始,伊利诺伊州就业保障部 (IDES) 就接到了海量的电话。咨询量超出了最初估计的高预期。几周内,该部门的呼叫中心通话量从每天大约 3,000 个电话增加到每天近 60,000-70,000 个电话。该部门的网站流量从之前的每天 50,000 次页面浏览量飙升至一天内高达 190 万次页面浏览量。如今,DES 的页面浏览量平均每天约为 500,000 次,大约是疫情前流量的十倍。负担过重的 IDES 联络中心代理忙于接听电话和响应网络查询,导致用户感到沮丧,电话线路等待时间过长,应答繁忙。外地办事处关闭,不接受当面询问,这加剧了公民的沮丧情绪,也加剧了对更简便的方式将信息传递给需要的人的需求。使用现有系统和资源,IDES 只能满足 2.5% 的每日信息请求,这造成了似乎无法管理的请求积压。进一步增加负担的是需要开发新的失业救济计划,这超出了开发人员的能力范围。这些问题的结合促使人们迫切需要额外的技术来满足当前的需求并随着疫情后的需求而增长。
结构和工作特性 Pneumax AIRPLUS 空气处理装置的设计和开发旨在提高可靠性、模块化和用户友好的操作和安装。由于具有不同功能和特性的多种模块以及多种材料选择,使 Pneumax AIRPLUS 空气处理装置成为一个坚固、可靠且极其灵活的模块化系统,可适应多种应用。正确组装的 AIRPLUS 装置是模块化的,具有无限的配置和解决方案,能够实现压缩空气处理的所有功能,例如过滤、调节、润滑、拦截和分配。过滤器(包括聚结和活性炭元件以及油分离器)提供足够的介质过滤。调节器或过滤调节器提供精确可靠的压力调节,它们也配有内置压力表或集成数字压力开关。润滑器根据消耗的空气提供油雾润滑,而截止阀可以气动、电动气动或手动操作,将有效管理压缩空气系统的供应和排气。该系列由一系列互补模块组成,例如气动连接旁路、压力开关和渐进启动。完整的组件由通过快速连接法兰连接在一起的各个模块组成,这些法兰提供“即插即用”组件。这提供了快速简便的安装或更换。Pneumax Airplus 空气处理装置可集成符合 EN-ISO 13849-1 和 CE 标志(根据欧盟机械指令附件 V)的安全元件。AIRPLUS 空气处理装置有 4 种不同尺寸,连接尺寸从 1/8“ 到 1”,流量性能高达 8000Nl/min。
使用液体活检(LB)进行全面的癌症基因组分析已经纳入保险覆盖范围,使患者能够从这项服务中受益。然而,该疗法存在诸多限制,例如一生只能接受一次治疗,且只适用于预计完成标准治疗的晚期癌症患者。因此,目前在健康保险医疗保健中使用液体活检面板测试进行具有临床应用价值的创新研究较为困难。那么,我们是否有可能以低成本、简便的方式执行多重 LB,即使用 NGS 同时从游离 DNA 中检测多个基因突变,以用于研发目的?当你考虑获取样本、建立库、NGS分析和后续的信息分析时,障碍相当高。说到数据分析,我想许多研究人员只要想到要确定 PC 规格、根据需要进行设置以及下载和运行论文中描述的软件所涉及的工作,就会感到沮丧。 在本次午餐研讨会上,演讲者将分享他们有限的经验并介绍多重 LB 试剂盒的最新趋势,同时讨论在低预算下进行内部多基因 LB 分析时需要注意的要点。特别是,对于那些因信息分析而无法引入内部 LB 的研究人员来说,我们希望向他们介绍承包商,并提供让他们感觉自己可以以某种方式完成的内容。希望本次研讨会能够对促进ctDNA临床应用的原创研究和开发起到一定的作用。
超级电容器[18]、锌空气[19,20]和锂空气电池[21]以及锂离子、钠离子和钾离子存储负极。[22–24] 不同钴磷化物(Co x P:CoP+Co 2 P)[25]与氧化钴(Co x P/CoO)[26]的组合使这些材料多功能化并提高了其性能。另一方面,Co x P和Co 3 (PO 4 ) 2的联合作用对锂硫电池电化学性能和多硫化物转化机理的影响尚未研究。尽管钴磷化物具有广泛的潜在应用,但它们通常通过复杂的合成路线合成,包括在过量的磷源和还原剂中对钴或钴氧化物进行磷化。[22,24–26] 最近,Li等人。报道了使用化学计量的脱氧核糖核酸 (DNA) 作为 P 源,通过简便的静电纺丝和热处理成功合成了 Co 2 P/Co 2 N/C。[27] 另一方面,由于聚丙烯腈(碳源)溶液中无机组分的溶解度较差,限制了 Co 2 P 的含量。相反,使用水和乙醇可溶性的聚乙烯吡咯烷酮 (PVP) 作为碳源,可以合成无机组分含量高的碳复合材料。[28] 此外,还证实了 PVP 衍生的碳/SiO 2 复合纳米纤维垫可以作为多功能中间层,有效防止多硫化物的穿梭,并提高 S 基锂电池的电化学性能。[29,30]
引导能量流和纳米晶体发色团混合组件中产生的激发态的性质对于实现它们的光催化和光电应用至关重要。通过结合稳态和时间分辨的吸收和光致发光 (PL) 实验,我们探测了 CsPbBr 3 -罗丹明 B (RhB) 混合组件中的激发态相互作用。PL 研究表明,CsPbBr 3 发射猝灭,同时 RhB 荧光增强,表明存在单线态能量转移机制。瞬态吸收光谱表明这种能量转移发生在 ~ 200 ps 的时间尺度上。为了了解能量转移是通过 Förster 还是 Dexter 机制发生的,我们利用简便的卤化物交换反应通过与氯化物合金化来调整供体 CsPbBr 3 的光学特性。这样,我们便可以调节供体 CsPb(Br 1-x Cl x ) 3 发射和受体 RhB 吸收之间的光谱重叠。对于 CsPbBr 3 - RhB,能量转移速率常数 (k ET ) 与 Förster 理论非常吻合,而与氯化物合金化以产生富含氯化物的 CsPb(Br 1-x Cl x ) 3 则更利于 Dexter 机制。这些结果凸显了优化供体和受体特性对于设计采用能量转移的光收集组件的重要性。通过纳米晶体供体的卤化物交换可以轻松调节光学特性,这为研究和定制钙钛矿发色团组件中的激发态相互作用提供了独特的平台。
Pneumax AIRPLUS 空气处理装置的设计和开发旨在提高可靠性、模块化和用户友好的操作和安装。由于具有不同功能和特性的多种模块以及多种材料选择,Pneumax AIRPLUS 空气处理装置成为一个坚固、可靠且极其灵活的模块化系统,可适应多种应用。正确组装的 AIRPLUS 装置是模块化的,具有无限的配置和解决方案,能够实现压缩空气处理的所有功能,例如过滤、调节、润滑、拦截和分配。过滤器(包括聚结和活性炭元件以及油分离器)可提供足够的介质过滤。调节器或过滤调节器提供精确可靠的压力调节,它们也配有内置压力表或集成数字压力开关。润滑器根据消耗的空气提供油雾润滑,而截止阀可以气动、电动气动或手动操作,将有效管理压缩空气系统的供应和排气。该系列由一系列互补模块组成,例如气动连接旁路、压力开关和渐进启动。完整的组件由通过快速连接法兰连接在一起的各个模块组成,从而提供“即插即用”组件。这提供了快速简便的安装或更换。Pneumax Airplus 空气处理装置可集成符合 EN-ISO 13849-1 和 CE 标志(根据欧盟机械指令附件 V)的安全元件。AIRPLUS 空气处理装置有 4 种不同尺寸,连接尺寸从 1/8“到 1”,流量性能高达 8000Nl/min。
摘要:多硫化物中间体 (Li2Sn,2<n≤8) 的穿梭和锂金属表面的枝晶生长阻碍了锂硫 (Li-S) 电池的实际应用。隔膜功能化提供了一种解决这些问题的直接方法。在此,我们展示了一种用于先进 Li-S 电池的多功能 MIL-125(Ti) 改性聚丙烯/聚乙烯隔膜。MIL-125(Ti) 是一种含钛的金属有机骨架 (MOF),具有开放骨架结构、高固有微孔率和路易斯酸特性。与原始隔膜相比,具有 MIL-125(Ti) 涂层的隔膜表现出更好的电解质润湿性和更低的电阻。独特的涂层层充当有效的物理和化学屏障区域,可捕获多硫化物物质,而不会影响 Li+的平稳传输。同时,MOF 中直径约为 1.5 纳米的高度有序微孔引导均匀的 Li + 镀层,从而抑制锂枝晶。因此,MOF 改性隔膜可显著提高 Li-S 电池的循环稳定性和倍率性能。在 0.2 C(1 C = 1675 mA g-1)下 200 次循环后的容量保持率超过 60%,在 2 C 下比容量为 612 mAh g-1。这种简便的方法为高性能 Li-S 电池提供了一条有效的途径。关键词:锂硫电池、金属有机框架、隔膜、穿梭效应、锂枝晶■ 介绍