量子态工程是量子光子技术的基石,主要依赖于自发参量下转换和四波混频,其中一个或两个泵浦光子自发衰减为一个光子对。这两种非线性效应都要求参与光子的动量守恒,这严重限制了所得量子态的多功能性。非线性超表面具有亚波长厚度,可以放宽这一限制;当与共振结合时,它们大大扩展了量子态工程的可能性。在这里,我们通过自发参量下转换在具有高品质因数、连续共振中准束缚态的半导体超表面中生成纠缠光子。通过增强量子真空场,我们的超表面在多个窄共振带内和宽光谱范围内增强了非简并纠缠光子的发射。在多个波长下泵浦的同一样品中的单个共振或多个共振可以产生多频量子态,包括簇态。这些特征表明超表面是量子信息的复杂状态的多功能来源。O
T 1 态。对于三重态,CCSD(T) 和 CASSCF 的结果大致相同,CCSD 的结果要差得多(图 S1b)。在分而治之的 q-UCCSD 方法中加入自旋翻转似乎是必不可少的,这导致垂直激发能量相对于 CASSCF 提高了约 1.2 eV。由于三重态的 HF 参考是 |11 20>(平面外三重态,平面内单重态),因此自旋翻转允许的 q-UCCSD 的优越性能的一个可能解释是它可以访问 |20 11> 配置(平面外单重态,平面内三重态),这对整体波函数有重要贡献(参见正文中的图 4a)。特别值得注意的是,带有自旋翻转的 q-UCCSD 方法找到了与 CASSCF 相同的最小值,并且总体上比 CCSD 产生了更好的结果。由于起点不佳,零 BLA 几何仍然很困难,尽管这种电子状态比 S0(一个 π 系统中四个近简并自旋轨道中的两个电子)的病态性要小。
暗光子的概念[1–3]已被许多理论物理学家和实验物理学家研究过。通常,暗光子与可见物质的相互作用假设为标准模型(SM) U (1) Y规范群和暗U (1) X规范群之间的阿贝尔动力学混合。由于低能对撞机[4–6]、介子衰变[7–9]、束流倾倒实验[10–12]和高能对撞机[13–18]等不同实验的限制,这种U (1)动力学混合不可能很大。然而,解释可重正化的U (1)动力学混合之小并不明显。在本文中,我们将考虑非阿贝尔动力学混合,以实现另一种可能性,即暗光子来自暗SU (2) X规范群,因此它与物质的耦合不在可重正化的水平上出现[19–21]。在暗 SU (2) X 规范群与 SM SU (2) L × U (1) Y 规范群的非阿贝尔动力学混合下,一个暗规范玻色子变成暗光子,而其他玻色子保持稳定形成暗物质粒子。这一情景预测了暗光子和暗物质的近简并质量谱。
控制和操纵量子纠缠非局域态是量子信息处理发展的关键一步。实现这种状态的一种有希望的大规模途径是通过相干偶极-偶极相互作用耦合固态量子发射器。纠缠本身就具有挑战性,因为它需要发射器之间的纳米距离和近乎简并的电子跃迁。通过实施高光谱成像来识别困在低温基质中的耦合有机分子对,我们通过斯塔克效应调节量子发射器的光学共振,获得了最大分子纠缠的独特光谱特征。我们还展示了使用振幅和相位定制的激光场对长寿命亚辐射离域态进行远场选择性激发。有趣的是,纠缠分子的光学纳米显微镜图像揭示了由其激发路径中的量子干涉产生的新空间特征,并揭示了每个量子发射器的确切位置。受控分子纠缠可以作为试验台,以解释由相干耦合控制的更复杂的物理或生物机制,并为实现新的量子信息处理平台铺平道路。
量子互联网连接远程量子处理器,这些处理器需要通过光子通道进行长距离交互和交换量子信号。然而,这些量子节点的工作波长范围并不适合长距离传输。因此,量子波长转换为电信波段对于基于光纤的长距离量子网络至关重要。在这里,我们提出了使用连续变量量子隐形传态的单光子偏振量子比特波长转换器,它可以有效地在近红外(适合与原子量子节点交互的 780/795 nm)和电信波长(适合长距离传输的 1300-1500 nm)之间转换量子比特。隐形传态使用纠缠光子场(即非简并双模压缩态),可以通过铷原子气体中的四波混合产生,使用原子跃迁的菱形配置。纠缠场可以以两个正交偏振态发射,相对相位锁定,特别适合与单光子偏振量子比特接口。我们的工作可能为实现长距离量子网络铺平道路。
非厄米趋肤效应 (NHSE) 是非平衡系统中一种令人着迷的现象,其中本征态大量局限于系统边界,将系统中加载的(准)粒子单向泵送到边界。最近,它与多体效应的相互作用得到了广泛的探索,并且已经证明粒子间排斥或费米简并压力会限制 NHSE 在其本征解和动力学中引起的边界积累。然而,在这项工作中,我们发现任意子统计数据可以更深远地影响 NHSE 动力学,抑制甚至逆转状态动力学朝着 NHSE 的局部方向。当涉及更多粒子时,这种现象更加明显。该系统中量子信息的传播显示出更加奇特的现象,其中 NHSE 仅影响热集合的信息动力学,而不会影响单个初始状态。我们的研究结果为探索由 NHSE 与任意子统计之间的相互作用引起的新型非厄米现象开辟了一条新途径,并有可能在超冷原子量子模拟器和量子计算机中得到证明。
我们讨论了近似量子纠错码系列,它们作为某些由非交换项组成的量子多体哈密顿量的近简并基态出现。对于精确码,纠错条件可以用低温热场双态中双边互信息的消失来表示。我们考虑了近似码的距离概念,该概念通过要求这种互信息很小而获得,并且我们评估了 SYK 模型和一族低秩 SYK 模型的这种互信息。在外推到接近零温度后,我们发现这两种模型都产生了具有恒定速率的费米子码,因为费米子的数量 N 趋于无穷大。对于 SYK,距离按 N 1 / 2 缩放,对于低秩 SYK,距离可以任意接近线性缩放,例如 N . 99,同时保持恒定速率。我们还考虑了无低能平凡状态性质的类似物,我们将其称为无低能绝热可及状态性质,并表明这些模型确实具有可以在与系统大小 N 不成比例的时间内绝热制备的低能状态。我们讨论了这些代码的全息模型,其中较大的代码距离是由于在一个简单的量子引力模型中出现了长虫洞几何。
Kitaev超导链是一种无旋转费米的模型,具有三胞胎样超导体。自从其参数的某些值以来,它引起了人们的兴趣,它提出了一个非平凡的拓扑阶段。在实际物理系统中,三胞胎超导性的稀缺性使Kitaev链的物理实现变得复杂。已经提出了许多建议,以克服这一困难并捏造人工三胞胎超导链。在这项工作中,我们研究了一个形成Cooper对的拼写的超导链,以S = 1状态,但S Z =0。的动机是,可以通过与S波超导底物的抗对称杂交相对诱导的链条诱导这种配对。我们研究边缘状态的性质和这些链的拓扑特性。在存在磁场的情况下,链可以用成对的费米亚点维持无间隙的超导性。这些费米点的动量空间拓扑是非平凡的,因为它们只能通过互相消灭而消失。对于小磁场,我们发现具有有限Zeemann Energy的良好定义的简并边缘模式。这些模式并非受到对称的保护,并且在散装中突然衰减,因为它们的能量与激发的连续体融合在一起。
基于石墨炔 (GY) 和石墨炔 (GDY) 的单层代表了下一代二维富碳材料,其可调结构和性能超越石墨烯。然而,检测原子级厚度的 GY/GDY 类似物中的能带形成一直具有挑战性,因为该系统必须同时满足长程有序和原子精度。本研究报告了在表面合成的金属化 Ag-GDY 薄片中形成具有介观(≈ 1 μ m)规律性的能带的直接证据。采用扫描隧道和角度分辨光电子光谱,分别观察到费米能级以上实空间电子态的能量相关跃迁和价带的形成。此外,密度泛函理论 (DFT) 计算证实了这些观察结果,并揭示了蜂窝晶格上双重简并的前沿分子轨道产生接近费米能级的平坦、狄拉克和 Kagome 能带。 DFT 建模还表明原始薄片材料具有固有带隙,该带隙保留在具有 h-BN 的双层中,而吸附诱导的带隙内电子态在 Ag-GDY 装饰银的 (111) 面的合成平台上演变。这些结果说明了通过原子精确的二维碳材料中的分子轨道和晶格对称性设计新型能带结构的巨大潜力。
并无需使用载流子注入即可增强电光调制。与此同时,人们正在努力实现完全集成在硅基平台中的发光器,作为 III – V 族材料的经济高效的替代品。这方面的两个主要途径是使用 Ge 及其与 Si 和 Sn 的合金,以及应变工程。硅 – 锗 – 锡 (GeSn) 合金可能是一种很有前途的解决方案 [4],因为它的能带结构可以通过其成分来控制,从而在宽光谱范围内实现高发射效率,但这些三元合金对材料生长提出了一些技术挑战。[5] 能带结构控制的替代途径是在 Ge 和 GeSn 合金中引入拉伸应变。这里的目标是利用拉伸应变来降低导带 L 和 Γ 最小值之间的能垒,实现准直接带隙材料,从而提高辐射效率。此外,拉伸应变的作用是消除重空穴 (HH) 和轻空穴 (LH) 价带之间的简并性,并降低导带和价带之间的能量差,[6,7] 从而提供对带隙的所需控制。这些能带结构效应可以通过光致发光 (PL) 实验揭示,而半导体中应变的关键测量可以使用拉曼光谱来实现。机械变形会显著影响 PL 发射、谷分裂的不均匀性或重叠