8在获取MEDLAB之前,ACL没有就与MedLab计算机网络相关的风险,MEDLAB持有的个人信息或解决与该网络获取相关的任何网络安全风险所采取的步骤进行足够的网络安全评估。特别是,在获得MedLab之前,ACL在前三年中没有进行过任何IT五式测试,脆弱性评估或IT安全审核。从2021年底开始,ACL拥有并控制了MedLab的计算机网络,该网络与ACL的计算机网络分开运行。此外,从那时起,IT团队负责向ACL首席信息官(CIO)报告的MEDLAB计算机网络的日常运营。ACL计划将MEDLAB的网络转移到ACL的网络并退役MEDLAB服务器。直到2022年7月左右才发生。
研究语言通常分离出一种语言方式或过程,重点是理解或生产。我们的目标是将两者结合在新的简洁语言范式中(拍手),在一个试验中利用理解和生产。试验结构在各种条件下是相同的,呈现一个听觉句子(受约束,不受约束,时间转移),然后是要命名的图片(正常,拼命的)。我们用脑电图测试了21位年轻的健康演讲者,以检查拍手提供的几种验证和新颖的对比。行为结果揭示了在受约束的句子之后的图片的最快命名时间,这表明在图片开始之前,基于句子约束,表明单词检索。命名不受约束的句子的命名与裸照命名一样快。句子发作后对正常语音的大脑反应(240-400ms)与时间转相关的语音有显着差异。图片锁定的ERP显示出幅度差异与条件的函数,尤其是在P2组件(200-300ms)中,并且也受到前面约束句子的调节。alpha-beta功率相对于时间倒转或不受约束的句子而言,上下文引导的图片命名降低。这些结果表明,拍手提供了一个有希望的框架来研究语言系统,提供了不同版本的语言内容和任务,并结合了电生理学或其他成像方法。
1. 一般作战 ................................................................................................ 59 2. 空对空(A/A) .............................................................................................. 60 3. 空对地(A/S) .............................................................................................. 62 4. 地对空(S/A) ............................................................................................ 64 5. 地对地(S/S) ...................................................................................... 64 6. 电磁战(EW)一体化 ............................................................................. 65 7. 海上空中作战(AIR-MAR) ............................................................................. 65 8. 海对海(MAR)作战 ............................................................................. 66 9. 太空作战(SO) ............................................................................................. 66
摘要。我们为量子计算 (BQP) 构建了一个经典可验证的简洁交互式论证,其通信复杂性和验证器运行时间在 BQP 计算的运行时间内是多对数的(在安全参数中是多项式的)。我们的协议是安全的,假设不可区分混淆 (iO) 和错误学习 (LWE) 的后量子安全性。这是第一个简洁的论证,适用于普通模型中的量子计算;先前的工作(Chia-Chung-Yamakawa,TCC '20)既需要较长的公共参考字符串,又需要非黑盒使用以随机预言机建模的哈希函数。在技术层面,我们重新审视了构建经典可验证量子计算的框架(Mahadev,FOCS '18)。我们为 Mahadev 的协议提供了一个独立的模块化安全性证明,我们认为这是有独立意义的。我们的证明很容易推广到验证者的第一条消息(包含许多公钥)被压缩的场景。接下来,我们将压缩公钥的概念形式化;我们将该对象视为受限/可编程 PRF 的泛化,并基于不可区分混淆对其进行实例化。最后,我们使用(足够可组合的)NP 简洁知识论证将上述协议编译成完全简洁的论证。使用我们的框架,我们获得了几个额外的结果,包括 - QMA 的简洁论证(给定见证的多个副本), - 量子随机预言模型中 BQP(或 QMA)的简洁非交互式论证,以及 - 假设后量子 LWE(无 iO)的 BQP(或 QMA)的简洁批处理论证。
我们为量子计算 (BQP) 构建了一个经典可验证的简洁交互式论证,其通信复杂度和验证器运行时间在 BQP 计算的运行时间内是多对数的(在安全参数中是多项式的)。我们的协议是安全的,假设不可区分混淆 (iO) 和带错学习 (LWE) 的后量子安全性。这是普通模型中量子计算的第一个简洁论证;先前的工作(Chia-Chung-Yamakawa,TCC '20)需要长公共参考字符串和非黑盒使用以随机预言机建模的哈希函数。在技术层面,我们重新审视了构建经典可验证量子计算的框架(Mahadev,FOCS '18)。我们为 Mahadev 的协议提供了一个独立的模块化安全性证明,我们认为这是独立的兴趣。我们的证明很容易推广到验证者的第一条消息(包含许多公钥)被压缩的场景。接下来,我们将压缩公钥的概念形式化;我们将对象视为受约束/可编程 PRF 的泛化,并基于不可区分性混淆对其进行实例化。最后,我们使用(足够可组合的)简洁的 NP 知识论证将上述协议编译成完全简洁的论证。使用我们的框架,我们实现了几个额外的结果,包括
1本文件是一份简洁的论文,提供相关的事实和数字,并概述了循环经济的关键好处,以应对行星危机或可持续发展挑战。这是一种知识产品,是工具箱的一部分,全球循环经济和资源效率联盟(GACERE)的成员已经开发出来,以支持他们在政治层面上的倡导和多边福拉,以过渡到循环经济。这不是谈判的文件,因此并不一定代表所有Gacere成员的观点。此外,它也不是根据国际或国内法制定任何具有约束力,法律或财务义务的意图。2 UNEP(2021)。 与自然实现和平:一种科学的蓝图来应对气候,生物多样性和污染紧急情况。 内罗毕。 3建立在现有的关键信息来源的基础上,本节表明气候危机继续增加其紧迫性。 4 UNEP(2020)。 排放差距报告2020。 5 IRP(2019)。 全球资源前景2019:未来的自然资源,我们想要6种生物量,包括食物,金属,非金属矿物质和化石燃料。 7 OECD(2018),2060年全球物质资源前景。 突出显示。2 UNEP(2021)。与自然实现和平:一种科学的蓝图来应对气候,生物多样性和污染紧急情况。内罗毕。3建立在现有的关键信息来源的基础上,本节表明气候危机继续增加其紧迫性。4 UNEP(2020)。 排放差距报告2020。 5 IRP(2019)。 全球资源前景2019:未来的自然资源,我们想要6种生物量,包括食物,金属,非金属矿物质和化石燃料。 7 OECD(2018),2060年全球物质资源前景。 突出显示。4 UNEP(2020)。排放差距报告2020。5 IRP(2019)。 全球资源前景2019:未来的自然资源,我们想要6种生物量,包括食物,金属,非金属矿物质和化石燃料。 7 OECD(2018),2060年全球物质资源前景。 突出显示。5 IRP(2019)。全球资源前景2019:未来的自然资源,我们想要6种生物量,包括食物,金属,非金属矿物质和化石燃料。7 OECD(2018),2060年全球物质资源前景。 突出显示。7 OECD(2018),2060年全球物质资源前景。突出显示。
2 技术概述 5 2.1 Kilian 协议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 进一步考察 Unruh 引理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .... .... .... .... .... 16
化学与生物分子工程系提供的本科课程模块描述如下。为简洁起见,工作量以 ABCDE 格式显示,其中 A 代表每周的讲座小时数,B 代表每周的辅导小时数,C 代表每周的实验室小时数,D 代表每周的项目/作业小时数,E 代表每周的准备工作小时数。CN1101A 化学工程原理与实践模块学分:4 先决条件:无 排除:无 交叉列表:无 本模块通过一系列动手实验室提供对化学工程概念的体验式接触。简单而又视觉上引人入胜的演示将使这些概念栩栩如生,并作为本科课程核心模块的预览和桥梁,同时突出它们的实际相关性。学生将通过关于理论背景和实验室程序的必修实验前阅读为每节课做准备。在实验室中,他们将学习进行测量、数据收集、分析、建模、解释和演示。实验室课程将与新加坡工业和社会相关的实际工程应用相结合。 CN2102 化学工程原理与实践 II 模块化学分:4 先决条件:无 排除:无 交叉列表:无 该模块是两部分模块的第二部分,旨在通过一系列动手实验室为一年级化学和生物分子工程专业的学生提供生物分子/生物化学/生物过程工程基础概念的体验式接触,包括质量和能量平衡、生物安全和无菌处理、生物反应动力学、生物反应器设计、下游加工和净化等。在实验室中,他们将学习进行测量、数据收集、分析、解释和演示。实验室课程将与新加坡工业和社会相关的实际工程应用相结合。 CN2101 物质与能量平衡 模块 学分:3 工作量:2-0.5-0-0-5 先决条件:无 排除:无 交叉列出:无 本模块为学生提供化学工程过程中物质和能量平衡的基本概念。 它还全面介绍了不同的分析和解决问题的方法。 特别是,本模块涵盖了稳态物质和能量平衡,包括循环、相变和反应、同时物质和能量平衡以及非稳态平衡。 所有基本概念都通过使用相关的过程示例来说明。 本模块针对一级工程或科学学生。 CN2116 化学动力学和反应器设计 模块 学分:4 工作量:3-1-0-3-3 共同要求:CN2125 排除:无 交叉列出:无 该模块首先复习化学动力学和热力学,重点介绍反应速率、速率表达式以及简单和复杂反应的不同定义。然后介绍理想反应器的设计方程,接着介绍速率数据分析的一般方法。反应器排序、多反应中的产量与生产率考虑因素,以及非
在通用盲量子计算问题中,客户端希望利用单个量子服务器来评估 C | 0 ⟩,其中 C 是任意量子电路,同时保持 C 的秘密性。客户端的目标是使用尽可能少的资源。这个问题由 Broadbent、Fitzsimons 和 Kashefi[4] 首次提出,已成为量子密码学研究的基础,这不仅是因为它本身的重要性,还因为它为新技术提供了试验台,这些新技术以后可以应用于相关问题(例如量子计算验证)。关于这个问题的已知协议主要是信息理论 (IT) 安全的或基于陷门假设(公钥加密)。在本文中,我们研究了由随机预言机建模的对称密钥原语的可用性如何改变通用盲量子计算的复杂性。我们给出了一种新的通用盲量子计算协议。与之前关于 IT 安全协议(例如 BFK[4])的工作类似,我们的协议可以分为两个阶段。在第一阶段,客户端准备一些具有相对简单量子门的量子小工具并将它们发送到服务器,而在第二阶段,客户端完全是经典的——它甚至不需要量子存储。至关重要的是,该协议的第一阶段是简洁的,也就是说,它的复杂性与电路大小无关。给定安全参数 κ ,它的复杂性只是一个固定的 κ 多项式,可用于评估大小高达 κ 的次指数的任何电路(或多个电路)。相比之下,已知的方案要么要求客户端执行与电路大小成比例的量子计算 [4],要么需要陷门假设 [18]。