摘要 植物与微生物之间的相互作用显著影响着植物的行为、生长和进化。许多微生物物种,如细菌、真菌、病毒和古菌,它们在植物的根际、叶际和内际定殖,参与了这些复杂的关联。根据微生物的特性和功能以及它们对植物的影响,这些相互作用可能是有利的,也可能是有害的。植物与微生物之间的积极关系对于营养吸收、抗逆性和抗病性至关重要。植物相关微生物可以通过多种方法提高营养的利用率,包括固氮、磷酸盐溶解和铁动员。它们还可以产生促进植物生长发育的植物激素。此外,某些有益微生物可作为生物防治剂,抑制病原体生长并保护植物免受疾病侵害。复杂的分子信号网络,如植物和微生物之间的化学信号流,经常促进这些相互作用。另一方面,某些微生物会感染植物,导致严重的产量损失。植物可能通过伤口、环境中的孔洞或直接的植物组织渗透而感染病原体。它们会产生化学物质和酶,干扰植物的防御能力并损害其免疫系统。病原体还会阻碍营养物质的摄入并干扰正常的生理功能,从而损害植物的健康。为了实现可持续农业和生态系统的正常运作,必须了解植物-微生物相互作用的微妙之处。利用有利的相互作用可以创造创新技术,包括生物肥料、生物防治剂和生物修复。这些策略有可能减轻农业对环境的影响,同时增加作物产量并减少化学投入。植物-微生物相互作用的研究已经因下一代测序技术、组学技术和生物信息学的进步而发生了改变
摘要:由于硅在自然界的普遍性和其特殊的性质,它是各行各业中最受欢迎的材料之一。目前,冶金硅是通过石英的碳热还原获得的,然后对其进行氢氯化和多重氯化以获得太阳能硅。这篇小型综述简要分析了通过电解熔盐获得硅的替代方法。综述涵盖了决定熔盐成分选择的因素、通过电解熔盐获得的典型硅沉淀物、对将电解硅用于微电子的可能性的评估、在锂离子电流源成分中使用电解硅的代表性测试结果以及将电解硅用于太阳能转换的代表性测试结果。本文最后指出了实际实施电解生产硅的方法、开发用于能源分配和微电子应用的新设备和材料需要解决的任务。
尽管在过去几十年中取得了巨大进步,但治疗失败仍然是抗癌疗法的重大负担。肿瘤细胞倾向于通过克隆进化和抗性亚克隆的选择来逃避化疗,从而导致治疗复发。下一代测序旨在找到耐药性癌细胞串扰中有希望的候选变异。这种方法可能进一步有助于分子肿瘤板适应每个患者的靶向治疗方案(1)。髓增生性综合征慢性髓样白血病(CML)成为有效且成功的靶向治疗的榜样。cml是一种罕见的肿瘤,主要是由相互易位t(9; 22)(q34; q11)引起的,导致BCR :: ABL1融合基因的形成(2)。在许多情况下,它通过酪氨酸激酶抑制剂(TKI)成功治疗,尤其是与BCR :: ABL1激酶结合的2-苯基氨基嘧啶伊替尼,从而预防了下游靶标的磷酸化(3)。尽管总体10年生存率为83%,但在治疗的五年内,所有患者中有20%至25%遭受治疗衰竭(4,5)。第二代和第三代TKI,即尼洛替尼,达沙替尼,鲍苏替尼和庞替尼,开发了以可变成功的变化(6,7)克服这种抗药性(6,7)。TKI抗性发生在依赖性或独立于BCR :: ABL1激酶改变。第一个提及的主要是由BCR :: abl1中的突变引起的,例如ABL1 p。(Tyr253His),p。(GLU255VAL)或p。(THR315ile))防止TKIS与BCR或BCR expristion TKIS结合,以防止TKIS与BCR :: ABCR1 anbl1 anbl1 and anbl1 and anbl1fination and Overection(8)。对于BCR :: ABL1-独立抵抗力,讨论了几种机制,例如,药物过表达EF ef lox top子转运蛋白,尤其是ATP结合盒(ABC)转运蛋白转运蛋白家族成员P-糖蛋白(P-GP,P-GP,ABCB1)或乳腺癌抗癌蛋白(BCRP,ABCG2)的传播(abcg2)的demaption(p-gp,abcb1),abcg2 abcg2 ryaption(abcg2)。 10)。此外,显示遗传像差,例如第8条或影响RUNT相关转录因子1(RUNX1)的突变,显示出患者中爆炸危机或抗TKI耐药性克隆的进展(11,12)。除了临床研究外,体外模型还可以详细研究耐药性的机理。这样的模型是关键工具,因为这些模型从这些模型中得出的发现被成功地转化为诊所,例如预测药物效率并改善治疗方案(13)。可以通过暴露于缓慢增加抗癌药物浓度或通过脉冲治疗来获得肿瘤细胞系的耐药性。 在这里,我们使用外显子组测序在体外模型中研究TKI抗性CML中的遗传变异。 为此,我们建立了伊马替尼和尼洛替尼抵抗的生物学重复。 我们报告了伊马替尼和尼洛替尼抗性发展中演变的序列变体。 此外,我们研究了候选变体PTPN11 p。(Tyr279Cys),PDGFRB p。(GLU578GLN)和NRAS p。(GLN61LYS)对TKI治疗的反应的影响。可以通过暴露于缓慢增加抗癌药物浓度或通过脉冲治疗来获得肿瘤细胞系的耐药性。在这里,我们使用外显子组测序在体外模型中研究TKI抗性CML中的遗传变异。为此,我们建立了伊马替尼和尼洛替尼抵抗的生物学重复。我们报告了伊马替尼和尼洛替尼抗性发展中演变的序列变体。此外,我们研究了候选变体PTPN11 p。(Tyr279Cys),PDGFRB p。(GLU578GLN)和NRAS p。(GLN61LYS)对TKI治疗的反应的影响。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
摘要 数字孪生 (DT) 主要是任何可想象的物理实体的虚拟复制品,是一项具有深远影响的高度变革性技术。无论是产品开发、设计优化、性能改进还是预测性维护,数字孪生都在通过多种多样的业务应用改变各个行业的工作方式。航空航天业(包括其制造基地)是数字孪生的热衷者之一,对其定制设计、开发和在更广泛的运营和关键功能中的实施表现出前所未有的兴趣。然而,这也带来了一些对数字孪生技术的误解,以及对其最佳实施缺乏了解。例如,将数字孪生等同于智能模型,而忽略了数据采集和可视化的基本组成部分,会误导创建者构建数字阴影或数字模型,而不是实际的数字孪生。本文揭示了数字孪生技术在航空航天领域以及其他领域的复杂性,以消除影响其在安全关键系统中有效实现的谬误。它包括对数字孪生及其组成元素的全面调查。阐述了它们特有的最先进的组成以及相应的局限性,提出了航空航天领域未来数字孪生的三个维度,称为航空数字孪生(aero-DT),作为本次调查的结果。这些包括数字孪生的交互、标准化和认知维度,如果认真利用这些维度,可以帮助航空 DT 研发界将现有和未来航空航天系统及其相关流程的效率提高四倍。
关于IGOT和SWAYAM门户网站的课程的简要概述:在我们的使命中,在适应不断发展的数字景观的使命中,提高了AI,ML,统计和数学的技能,必须不断升级IT部门的技能和知识。随着大多数IA和AD功能向在线平台的过渡,对于所有Oưicers和Staư都至关重要,对信息系统有了更深入的了解,尤其是在人工智能(AI),机器学习(ML)和数据分析等领域。为了使我们的团队掌握这些进步所需的基本技能,提供了策划的免费,高质量在线课程的清单。这些课程是由IIT Madras的一项倡议的Swayam Portal介绍的,并且是针对AI,ML和相关领域的主要概念而定制的。统计和数学对AI和ML在审计工作中的重要性的重要性是在审核中实施AI和ML的实施,需要在统计和数学方面具有牢固的基础。这些学科构成了数据分析,预测建模和算法设计的骨干。通过掌握这些基础知识,审核员可以:了解数据模式:确定可能表明关注领域的趋势和异常。开发AI应用程序:利用统计和数学技术来构建用于审核过程的简单AI/ML模型。完成后,这些课程是免费的,高质量的和o的认证。推荐课程的基础课程1。人工智能的基础准备高级学习:创建一种学习高级统计和编程语言(例如R或Python),以在认识到这一点的情况下部署复杂的模型,以下是在Swayam Portal上确定的,在IIT Madras的一项倡议上,为我们的所有ODICERS和STAư提供了我们的持续专业教育计划。
CRISPR 是一种非常强大的技术,可以调节基因组中的任何靶基因,具有良好的治疗目的。CRISPR-Cas9 是一种方便的基因操作工具。尽管如此,人类基因编辑,特别是生殖基因的广泛后果尚无法预测。首先,一旦编辑,基因将成为人类后代的一部分,可能无法从人类中消除;其次,成功率无法保证;第三,编辑的保真度,因为它可能会影响不相关的基因或未指定的 DNA 片段;最后但并非最不重要的是,它对基因相互作用、网络和信号通路的影响可能难以预测。CRISPR-Cas9 主要包括精确的基因组编辑、快速性和成本效益、疾病模型的创建、基因功能的研究、基因治疗和转化研究中的应用以及物种的广泛多样性。该技术还引发了科学界的道德和伦理担忧。美国国立卫生研究院 (NIH) 要求对人类细胞中的基因修饰进行伦理和安全批准。 NIH 目前不资助人类胚胎中 CRISPR 的研究,并反对在生殖细胞中使用 CRISPR,因为这些改变将是永久性的和可遗传的。该技术有望对癌症治疗产生最深远的影响。基于 CRISPR 的技术的最新进展正在重新定义癌症的研究方式,并有可能改善抗癌疗法。改进该技术的一种方法是使用机器学习方法来理解 CRISPR 错误并预测更具体的编辑和修复结果。
煤层甲烷是重要的能源,在过去的二十年中一直在迅速发展。此外,印度成为基于天然气的经济的承诺更加强调增加国内天然气的生产。因此,可以从煤层气体中利用巨大的潜力。井眼稳定性是任何井生命周期的关键因素,尤其是在地下存在煤层形成的地方,因为煤层面临一些挑战,主要是因为煤的断裂梯度低,并且煤层中存在几个天然裂缝网络。本综述论文概述了影响不同类型的井眼建模技术的井眼稳定性的因素,即分析模型,波利亚弹性模型,它是最广泛使用的技术,并以合理的准确性提供了围绕模型和其他数值模型的元素,并以合理的准确性提供了诸如Hydo-Hydro-Hydro-Mechanical(Themo-Hydro)和其他元素的限制元素。垂直和水平井的情况,因为这是计算断裂梯度的关键标准。中,THM耦合方法是最先进的建模技术,当存在高热应力时使用。之后,它讨论了用于在油基泥浆(例如油性泥浆),可降解聚合物基于聚合物的钻孔液(具有最小地层损伤和具有泡沫的基于泡沫的钻孔液)中使用的不同钻孔液,具有有效的切割能力。此外,它们的局限性和优势以及对钻孔液引起的渗透性损伤和拉伸裂缝的影响。因此,对CBM提取过程的技术改进进行了整体审查。
MGR的经济潜力巨大,特别是对于药品,生物技术和消费产品。但是,值得注意的是,除非将鱼类用于研究和开发目的,否则MGR部分的规定不适用于捕鱼/鱼类和其他捕鱼的生物海洋资源。此外,迄今为止,大多数跨国公司的创新都起源于国家辖区内,但是由于其非凡的丰富生物多样性和新颖的生态系统,ABNJ的潜力提供了更多机会。由于BBNJ DSI是全球DSI的一小部分,因此几乎所有BBNJ-DSI商业结果也可能还会使用CBD(即国家司法管辖区)的DSI。由于与ABNJ中的MGR收集相关的高成本,需要强大的经济激励措施。通过对几个联合国工具的监管景观对齐(例如bbnj和cbd),可以加强BBNJ协议及其利益共享机制。
© 作者 2025。开放存取 本文根据知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议授权,允许以任何媒体或格式进行任何非商业性使用、共享、分发和复制,只要您给予原作者和来源适当的信任、提供知识共享许可协议的链接并表明您是否修改了许可材料。根据此许可,您无权共享源自本文或本文部分内容的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非材料致谢中另有说明。如果材料未包含在文章的知识共享许可中,且您的预期用途不被法定规定允许或超出允许用途,您需要直接从版权所有者处获得许可。要查看此许可的副本,请访问 http://creativecommons.org/licenses/by-nc-nd/4.0/。