增强弹力织物的压缩力 Performax ™ 4388 是一种可拉伸的水性化合物,具有出色的拉伸恢复性、耐磨性、柔韧性和柔软度平衡,可增强塑身衣、牛仔服、瑜伽裤、矫形织物和其他要求严苛的应用中使用的弹力织物的压缩力。这种即用型聚氨酯涂层可形成柔软、有弹性的薄膜,对棉、涤纶、尼龙及其混纺等多种基材有出色的附着力。Performax 4388 可使用所有传统技术进行涂覆,例如刮刀、迈耶棒、轮转丝网和凹版印刷,以及精密喷涂和功能性数码印刷方法。根据性能要求,可涂覆单层或多层化合物涂层,以达到所需的性能水平。
— 键合过程中铜 (Cu) 箔的氧化会使熔化温度从 1,083°C 降低到 1,065°C — 最大金属化厚度为 1 毫米 — 陶瓷的两侧都必须有金属化层 — 例如氧化铝 (Al 2 O 3 )、氮化铝 (AlN) 和氧化锆 (ZrO 2 ) 掺杂的高性能基板 (HPS)。 o 活性金属键合 (AMB)
金属有机骨架 (MOF) 是一类多样化的材料,由有机配体与金属离子反应形成由多孔网络组成的晶体配位化合物。MOF 具有高内部表面积和易于调节的化学性质,因此已被用于各种各样的应用,[1] 包括:气体存储和分离、[2] 催化、[3] 传感、[4] 水净化、[5] 药物释放、[6] 和电子学。[7] 然而,MOF 的不溶性使其很难加工成实际应用所需的复杂形状和图案,从而限制了它们在复杂设备中的使用。[8] 因此,人们探索了各种各样的方法来在表面上生长、沉积和图案化 MOF。 [9] 这些技术包括:喷涂、[10] 旋涂、[11] 浸涂、[11,12] 软光刻、[13] 微流体[14] 和 3D 打印、[15] 静电纺丝[16] 和凝胶整体法。[15c,17]
为提高隔膜性能、降低热失控概率,在 PE/PP 膜上采用陶瓷颗粒(主要是氧化铝(Al 2 O 3 )颗粒)涂覆一层陶瓷层。涂覆的氧化铝层可防止隔膜在高温下发生故障,并阻止枝晶对隔膜的损坏。要求氧化铝必须足够纯净(通常纯度为 99.99%),因此金属阳离子杂质和金属杂质低于几 ppm。杂质可能会渗入电解液,并在电池运行过程中形成枝晶,或者形成加速枝晶形成的晶核。陶瓷层中的金属是短路的根源,无论是由原材料和制造过程引入的,还是在运行过程中形成的。陶瓷层中的杂质更有害,因为它靠近聚合物膜。
− 最简单的选择是将两种材料相互电绝缘。如果它们不电接触,就不会产生电偶。这可以通过在具有不同电势的金属之间使用非导电材料来实现。 − 可以使用防水化合物(例如油脂)或在金属上涂上不透水的保护层(例如合适的油漆、清漆或塑料)来防止与电解质接触。如果无法同时涂覆两种材料,则应将涂层应用于具有较高电极电位的材料。如果仅在活性更高的材料上涂覆涂层,则如果涂层受损,将产生较大的阴极面积,而对于暴露的非常小的阳极面积,腐蚀率将相应较高。 − 电镀或其他金属涂层也有帮助。通常使用更贵重的金属,因为它们更耐腐蚀。镀锌可通过牺牲阳极作用保护钢基体金属。
本文从宏观和微观两个角度研究了钠金属的断裂行为,并讨论了其在电池应用中的相应影响。由于钠金属在空气中极易发生反应,其机械性能尚未得到很好的研究,但本文我们在惰性气体中实施了定制的拉伸试验机以规避这一问题,从而研究了钠的断裂行为。有趣的是,我们发现钠几乎完全不受缺陷(裂纹状特征)的影响,即缺陷不会降低钠的有效强度。相反,由于钠箔具有极强的延展性,在拉伸状态下,钠箔会表现出极端的全厚度收缩,直至接近一条线。我们还使用扫描电子显微镜来识别与钠的变形和断裂相关的微观结构特征和潜在机制。此外,本研究详细介绍了这些实验观察在电池应用背景下的相应影响,并为合理设计钠基电池提供了新的见解。总体而言,这些新的实验结果可能有助于设计钠基储能系统,并避免充电和放电循环过程中的潜在机械损坏。
摘要:金属纳米图案在利用纳米级电传导的应用中无处不在,包括互连、电纳米接触和金属垫之间的小间隙。这些金属纳米图案可以设计成显示其他物理特性(光学透明性、等离子体效应、铁磁性、超导性、散热等)。出于这些原因,深入研究使用简单工艺的新型光刻方法是实现高分辨率和高吞吐量金属纳米图案的关键持续问题。在本文中,我们介绍了一种简单的方法,通过聚焦的 Ga + 束有效分解 Pd 3 (OAc) 6 旋涂薄膜,从而得到富含金属的 Pd 纳米结构。值得注意的是,使用低至 30 μ C/cm 2 的电荷剂量就足以制造金属 Pd 含量高于 50% (at.) 且具有低电阻率 (70 μ Ω · cm) 的结构。二元碰撞近似模拟为这一实验发现提供了理论支持。这种显著的行为用于提供三种概念验证应用:(i) 创建与纳米线的电接触,(ii) 在大型金属接触垫之间制造小 (40 纳米) 间隙,以及 (iii) 制造大面积金属网格。讨论了聚焦离子束直接分解旋涂有机金属薄膜对多个领域的影响。关键词:聚焦离子束、旋涂有机金属薄膜、电接触、纳米间隙电极、大面积网格■ 简介
为了缓解这些问题,研究人员一直在尝试通过涂覆气管导管表面来改变气管导管和患者气管组织之间的界面。例如,Olson 等人将银粒子添加到气管导管上的水凝胶涂层中以减少细菌负担,并使用狗作为模型系统来评估该策略的成功性。在另一项研究中,在绵羊模型上测试了一种采用抗菌分子磺胺嘧啶银的浸涂方法;在这里,细菌定植在气管导管和组织上都成功减少。[5] 2008 年,市售的银涂层管在人类患者身上进行了测试;正如预期的那样,观察到 VAP 发生率降低或至少延迟。[6] 文献中介绍的其他抗菌涂层利用了 ceragenin(模仿抗菌生长抑制剂)或苯乙烯苯。[7,8]
陶瓷硅基涂层是专门为某些金属基材(不锈钢、碳钢、高合金和铸造合金)提供防腐保护而设计和开发的,它是由无机成分的受控熔合过程产生的,旨在在金属基材上形成表面层。传统的涂层工艺包括制备配方(从创新的陶瓷基质开始),将原材料以合适的配方混合以满足涂层件的要求,然后对要涂层的工件进行预处理(通常是喷砂,这是一个简单的步骤),以去除金属表面的杂质,然后使用最合适的技术在工件上沉积陶瓷配方,以确保最佳性能。最常见的应用技术是喷涂、浸涂和流涂(也可以提到电泳沉积和粉末静电)。最后需要进行 700-950 ºC 以上的热处理,以便将陶瓷硅基涂层巩固在金属基材上。